It has been shown that the alternating direction method of multipliers(ADMM)is not necessarily convergent when it is directly extended to a multiple-block linearly constrained convex minimization model with an objecti...It has been shown that the alternating direction method of multipliers(ADMM)is not necessarily convergent when it is directly extended to a multiple-block linearly constrained convex minimization model with an objective function that is in the sum of more than two functions without coupled variables.Recently,we pro-posed the block-wise ADMM,which was obtained by regrouping the variables and functions of such a model as two blocks and then applying the original ADMM in block-wise.This note is a further study on this topic with the purpose of showing that a well-known relaxation factor proposed by Fortin and Glowinski for iteratively updat-ing the Lagrangian multiplier of the originalADMMcan also be used in the block-wise ADMM.We thus propose the block-wise ADMM with Fortin and Glowinski’s relax-ation factor for the multiple-block convex minimization model.Like the block-wise ADMM,we also suggest further decomposing the resulting subproblems and regular-izing them by proximal terms to ensure the convergence.For the block-wise ADMM with Fortin and Glowinski's relaxation factor,its convergence and worst-case conver-gence rate measured by the iteration complexity in the ergodic sense are derived.展开更多
基金Bing-Sheng He and Ming-Hua Xu were supported by the National Natural Science Foundation of China(No.11471156)Xiao-Ming Yuan was supported by the General Research Fund from Hong Kong Research Grants Council(No.HKBU 12313516).
文摘It has been shown that the alternating direction method of multipliers(ADMM)is not necessarily convergent when it is directly extended to a multiple-block linearly constrained convex minimization model with an objective function that is in the sum of more than two functions without coupled variables.Recently,we pro-posed the block-wise ADMM,which was obtained by regrouping the variables and functions of such a model as two blocks and then applying the original ADMM in block-wise.This note is a further study on this topic with the purpose of showing that a well-known relaxation factor proposed by Fortin and Glowinski for iteratively updat-ing the Lagrangian multiplier of the originalADMMcan also be used in the block-wise ADMM.We thus propose the block-wise ADMM with Fortin and Glowinski’s relax-ation factor for the multiple-block convex minimization model.Like the block-wise ADMM,we also suggest further decomposing the resulting subproblems and regular-izing them by proximal terms to ensure the convergence.For the block-wise ADMM with Fortin and Glowinski's relaxation factor,its convergence and worst-case conver-gence rate measured by the iteration complexity in the ergodic sense are derived.