This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Und...This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.展开更多
The Magneto-acoustic Tomography with Current Injection (MAT-CI) is a new biological electrical impedance imaging technique that combines Electrical Impedance Tomography (EIT) with Ultrasonic Imaging (UI), which posses...The Magneto-acoustic Tomography with Current Injection (MAT-CI) is a new biological electrical impedance imaging technique that combines Electrical Impedance Tomography (EIT) with Ultrasonic Imaging (UI), which possesses the non-invasive and high-contrast of the EIT and the high-resolution of the UI. The MAT-CI is expected to acquire high quality image and embraces a wide application. Its principle is to put the conductive sample in the Static Magnetic Field(SMF) and inject a time-varying current, during which the SMF and the current interact and generate the Lorentz Force that inspire ultrasonic signal received by the ultrasonic transducers positioned around the sample. And then according to related reconstruction algorithm and ultrasonic signal, electrical conductivity image is obtained. In this paper, a forward problem mathematical model of the MAT-CI has been set up to deduce the theoretical equation of the electromagnetic field and solve the sound source distribution by Green’s function. Secondly, a sound field restoration by Wiener filtering and reconstruction of current density by time-rotating method have deduced the Laplace’s equation that caters to the current density to further acquire the electrical conductivity distribution image of the sample through iteration method. In the end, double-loop coils experiments have been conducted to verify its feasibility.展开更多
基金supported by the Natural Science Foundation of China(11801108)the Natural Science Foundation of Guangdong Province(2021A1515010314)the Science and Technology Planning Project of Guangzhou City(202201010111)。
文摘This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.
文摘The Magneto-acoustic Tomography with Current Injection (MAT-CI) is a new biological electrical impedance imaging technique that combines Electrical Impedance Tomography (EIT) with Ultrasonic Imaging (UI), which possesses the non-invasive and high-contrast of the EIT and the high-resolution of the UI. The MAT-CI is expected to acquire high quality image and embraces a wide application. Its principle is to put the conductive sample in the Static Magnetic Field(SMF) and inject a time-varying current, during which the SMF and the current interact and generate the Lorentz Force that inspire ultrasonic signal received by the ultrasonic transducers positioned around the sample. And then according to related reconstruction algorithm and ultrasonic signal, electrical conductivity image is obtained. In this paper, a forward problem mathematical model of the MAT-CI has been set up to deduce the theoretical equation of the electromagnetic field and solve the sound source distribution by Green’s function. Secondly, a sound field restoration by Wiener filtering and reconstruction of current density by time-rotating method have deduced the Laplace’s equation that caters to the current density to further acquire the electrical conductivity distribution image of the sample through iteration method. In the end, double-loop coils experiments have been conducted to verify its feasibility.