This research paper represents a numerical approximation to non-linear two-dimensional reaction diffusion equation from population genetics. Since various initial and boundary value problems exist in two-dimensional r...This research paper represents a numerical approximation to non-linear two-dimensional reaction diffusion equation from population genetics. Since various initial and boundary value problems exist in two-dimensional reaction-diffusion, phenomena are studied numerically by different numerical methods, here we use finite difference schemes to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with exact results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. It is shown that the numerical schemes give better solutions. Moreover, the schemes can be easily applied to a wide class of higher dimension nonlinear reaction diffusion equations with a little modification.展开更多
This research paper represents a numerical approximation to three interesting equations of Fisher, which are linear, non-linear and coupled linear one dimensional reaction diffusion equations from population genetics....This research paper represents a numerical approximation to three interesting equations of Fisher, which are linear, non-linear and coupled linear one dimensional reaction diffusion equations from population genetics. We studied accuracy in term of L∞ error norm by random selected grids along time levels for comparison with exact results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. It is shown that the numerical schemes give better solutions. Moreover, the schemes can be easily applied to a wide class of higher dimension non-linear reaction diffusion equations.展开更多
In this paper, we originate results with finite difference schemes to approximate the solution of the classical Fisher Kolmogorov Petrovsky Piscounov (KPP) equation from population dynamics. Fisher’s equation describ...In this paper, we originate results with finite difference schemes to approximate the solution of the classical Fisher Kolmogorov Petrovsky Piscounov (KPP) equation from population dynamics. Fisher’s equation describes a balance between linear diffusion and nonlinear reaction. Numerical example illustrates the efficiency of the proposed schemes, also the Neumann stability analysis reveals that our schemes are indeed stable under certain choices of the model and numerical parameters. Numerical comparisons with analytical solution are also discussed. Numerical results show that Crank Nicolson and Richardson extrapolation are very efficient and reliably numerical schemes for solving one dimension fisher’s KPP equation.展开更多
This research paper represents a numerical approximation to non-linear coupled one dimension reaction diffusion system, which includes the existence and uniqueness of the time dependent solution with upper and lower b...This research paper represents a numerical approximation to non-linear coupled one dimension reaction diffusion system, which includes the existence and uniqueness of the time dependent solution with upper and lower bounds of the solution. Also numerical approximation is obtained by finite difference schemes to reach at reasonable level of accuracy, which is magnified by L2, L∞ and relative error norms. The accuracy of the approximations is shown by randomly selected grid points along time level and comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Moreover, the schemes can be easily applied to a wide class of higher dimension non-linear reaction diffusion equations with a little modifications.展开更多
文摘This research paper represents a numerical approximation to non-linear two-dimensional reaction diffusion equation from population genetics. Since various initial and boundary value problems exist in two-dimensional reaction-diffusion, phenomena are studied numerically by different numerical methods, here we use finite difference schemes to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with exact results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. It is shown that the numerical schemes give better solutions. Moreover, the schemes can be easily applied to a wide class of higher dimension nonlinear reaction diffusion equations with a little modification.
文摘This research paper represents a numerical approximation to three interesting equations of Fisher, which are linear, non-linear and coupled linear one dimensional reaction diffusion equations from population genetics. We studied accuracy in term of L∞ error norm by random selected grids along time levels for comparison with exact results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. It is shown that the numerical schemes give better solutions. Moreover, the schemes can be easily applied to a wide class of higher dimension non-linear reaction diffusion equations.
文摘In this paper, we originate results with finite difference schemes to approximate the solution of the classical Fisher Kolmogorov Petrovsky Piscounov (KPP) equation from population dynamics. Fisher’s equation describes a balance between linear diffusion and nonlinear reaction. Numerical example illustrates the efficiency of the proposed schemes, also the Neumann stability analysis reveals that our schemes are indeed stable under certain choices of the model and numerical parameters. Numerical comparisons with analytical solution are also discussed. Numerical results show that Crank Nicolson and Richardson extrapolation are very efficient and reliably numerical schemes for solving one dimension fisher’s KPP equation.
文摘This research paper represents a numerical approximation to non-linear coupled one dimension reaction diffusion system, which includes the existence and uniqueness of the time dependent solution with upper and lower bounds of the solution. Also numerical approximation is obtained by finite difference schemes to reach at reasonable level of accuracy, which is magnified by L2, L∞ and relative error norms. The accuracy of the approximations is shown by randomly selected grid points along time level and comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Moreover, the schemes can be easily applied to a wide class of higher dimension non-linear reaction diffusion equations with a little modifications.