This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, th...This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM, and the scattered field from the isolated target is obtained utilizing the method of moments (MOM). Meanwhile, the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT. Our hybrid method is first validated by available MOM results. Then, the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude, incident and scattering angles are numerically simulated and discussed. This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface.展开更多
A finite difference method is introduced to solve the forward-backward heat equation in two space dimensions. In this procedure, the backward and forward difference scheme in two subdomains and a coarse-mesh second-or...A finite difference method is introduced to solve the forward-backward heat equation in two space dimensions. In this procedure, the backward and forward difference scheme in two subdomains and a coarse-mesh second-order central difference scheme at the middle interface are used. Maximum norm error estimate for the procedure is derived. Then an iterative method based on domain decomposition is presented for the numerical scheme and the convergence of the given method is established. Then numerical experiments are presented to support the theoretical analysis.展开更多
A general type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well studied, including stochastic Hamiltonian systems. Under some...A general type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well studied, including stochastic Hamiltonian systems. Under some much weaker monotonicity assumptions, the existence and uniqueness of measurable solutions are established with a incthod of continuation. Furthermore, the continuity and differentiability of the solutions to FBDSDEs depending on parameters is discussed.展开更多
Forward-backward algorithm, used by watermark decoder for correcting non-binary synchronization errors, requires to traverse a very large scale trellis in order to achieve the proper posterior probability, leading to ...Forward-backward algorithm, used by watermark decoder for correcting non-binary synchronization errors, requires to traverse a very large scale trellis in order to achieve the proper posterior probability, leading to high computational complexity. In order to reduce the number of the states involved in the computation, an adaptive pruning method for the trellis is proposed. In this scheme, we prune the states which have the low forward-backward quantities below a carefully-chosen threshold. Thus, a wandering trellis with much less states is achieved, which contains most of the states with quite high probability. Simulation results reveal that, with the proper scaling factor, significant complexity reduction in the forward-backward algorithm is achieved at the expense of slight performance degradation.展开更多
A two-time-level, three-dimensional numerical ocean circulation model(named MASNUM) was established with a two-level, single-step Eulerian forward-backward time-differencing scheme. A mathematical model of large-sca...A two-time-level, three-dimensional numerical ocean circulation model(named MASNUM) was established with a two-level, single-step Eulerian forward-backward time-differencing scheme. A mathematical model of large-scale oceanic motions was based on the terrain-following coordinated, Boussinesq, Reynolds-averaged primitive equations of ocean dynamics. A simple but very practical Eulerian forward-backward method was adopted to replace the most preferred leapfrog scheme as the time-differencing method for both barotropic and baroclinic modes. The forward-backward method is of second-order of accuracy, computationally efficient by requiring only one function evaluation per time step, and free of the computational mode inherent in the three-level schemes. This method is superior to the leapfrog scheme in that the maximum time step of stability is twice as large as that of the leapfrog scheme in staggered meshes thus the computational efficiency could be doubled. A spatial smoothing method was introduced to control the nonlinear instability in the numerical integration. An ideal numerical experiment simulating the propagation of the equatorial Rossby soliton was performed to test the amplitude and phase error of this new model. The performance of this circulation model was further verified with a regional(northwest Pacific) and a quasi-global(global ocean simulation with the Arctic Ocean excluded) simulation experiments. These two numerical experiments show fairly good agreement with the observations. The maximum time step of stability in these two experiments were also investigated and compared between this model and that model which adopts the leapfrog scheme.展开更多
In this paper we propose the finite difference method for the forward-backward heat equation. We use a coarse-mesh second-order central difference scheme at the middle line mesh points and derive the error estimate. T...In this paper we propose the finite difference method for the forward-backward heat equation. We use a coarse-mesh second-order central difference scheme at the middle line mesh points and derive the error estimate. Then we discuss the iterative method based on the domain decomposition for our scheme and derive the bounds for the rates of convergence. Finally we present some numerical experiments to support our analysis.展开更多
In this paper,we propose a new numerical method which is a least squares approximaton based on pseudospectral method for the Forward-Backward heat equation. The existence and uniqueness of the solution of the least sq...In this paper,we propose a new numerical method which is a least squares approximaton based on pseudospectral method for the Forward-Backward heat equation. The existence and uniqueness of the solution of the least squares approximation are proved. Error estimates for this approximation are given,which show that tile order of convergence depends only on the regularity of tile solution and the right hand of the Forward-Backward heat equation.展开更多
The forward-backward heat equation arises in a remarkable variety of physical applications. A non-overlaping domain decomposition method was constructed to obtain numerical solutions of the forward-backward heat equa...The forward-backward heat equation arises in a remarkable variety of physical applications. A non-overlaping domain decomposition method was constructed to obtain numerical solutions of the forward-backward heat equation. The primary advantage is that the method reduces the computation time tremendously. The convergence of the given method is established. The numerical performance shows that the domain decomposition method is effective.展开更多
The aim of this work is to study the impacts of the oil spills on the electromagnetic scattering of the ocean surfaces in bistatic and monostatic configurations. Therefore, in this paper, we will study the influence o...The aim of this work is to study the impacts of the oil spills on the electromagnetic scattering of the ocean surfaces in bistatic and monostatic configurations. Therefore, in this paper, we will study the influence of the pollutants (oil spills) on the physical and geometrical properties of sea surface. In recent literature, the study of the electromagnetic scattering from contaminated sea surface (sea surface covered by oil spill) was limited in monostatic case. In this paper, we will study this effect in bistatic configuration, which is interested in presence of pollution in sea surface. Indeed, we will start the numerical analysis of the bistatic scattering coefficients of a clean sea surface. Then, we will study the electromagnetic signature from sea surface covered by oil spills in bistatic case using the numerical Forward-Backward Method (FBM). The obtained numerical simulation of bistatic scattering coefficients of clean and contaminated sea surface is studied as a function of various parameters (frequency, incident angle, sea state, type of pollutant…). And the obtained results are also compared with those published in the literature, including those using asymptotic methods.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60571058)the National Defense Foundation of China
文摘This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM, and the scattered field from the isolated target is obtained utilizing the method of moments (MOM). Meanwhile, the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT. Our hybrid method is first validated by available MOM results. Then, the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude, incident and scattering angles are numerically simulated and discussed. This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface.
基金Supported by National Science Foundation of China(Grant 10871179)the National Basic Research Programme of China(Grant 2008CB717806)the Department of Education of Zhejiang Province(GrantY200803559).
文摘A finite difference method is introduced to solve the forward-backward heat equation in two space dimensions. In this procedure, the backward and forward difference scheme in two subdomains and a coarse-mesh second-order central difference scheme at the middle interface are used. Maximum norm error estimate for the procedure is derived. Then an iterative method based on domain decomposition is presented for the numerical scheme and the convergence of the given method is established. Then numerical experiments are presented to support the theoretical analysis.
基金supported by the National Natural Science Foundation of China (No. 10771122)the NaturalScience Foundation of Shandong Province of China (No. Y2006A08)the National Basic ResearchProgram of China (973 Program) (No. 2007CB814900)
文摘A general type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well studied, including stochastic Hamiltonian systems. Under some much weaker monotonicity assumptions, the existence and uniqueness of measurable solutions are established with a incthod of continuation. Furthermore, the continuity and differentiability of the solutions to FBDSDEs depending on parameters is discussed.
基金supported in part by National Natural Science Foundation of China (61101114, 61671324) the Program for New Century Excellent Talents in University (NCET-12-0401)
文摘Forward-backward algorithm, used by watermark decoder for correcting non-binary synchronization errors, requires to traverse a very large scale trellis in order to achieve the proper posterior probability, leading to high computational complexity. In order to reduce the number of the states involved in the computation, an adaptive pruning method for the trellis is proposed. In this scheme, we prune the states which have the low forward-backward quantities below a carefully-chosen threshold. Thus, a wandering trellis with much less states is achieved, which contains most of the states with quite high probability. Simulation results reveal that, with the proper scaling factor, significant complexity reduction in the forward-backward algorithm is achieved at the expense of slight performance degradation.
基金The National Science Foundation of China under contract Nos 40906017 and 41376038the National High Technology Research and Development Program(863 Program)of China under contract No.2013AA09A506+1 种基金the National Key Scientific Research Projects under contract No.2012CB955601the Special Projects on Public Sector under contract Nos 200905024 and 201409089
文摘A two-time-level, three-dimensional numerical ocean circulation model(named MASNUM) was established with a two-level, single-step Eulerian forward-backward time-differencing scheme. A mathematical model of large-scale oceanic motions was based on the terrain-following coordinated, Boussinesq, Reynolds-averaged primitive equations of ocean dynamics. A simple but very practical Eulerian forward-backward method was adopted to replace the most preferred leapfrog scheme as the time-differencing method for both barotropic and baroclinic modes. The forward-backward method is of second-order of accuracy, computationally efficient by requiring only one function evaluation per time step, and free of the computational mode inherent in the three-level schemes. This method is superior to the leapfrog scheme in that the maximum time step of stability is twice as large as that of the leapfrog scheme in staggered meshes thus the computational efficiency could be doubled. A spatial smoothing method was introduced to control the nonlinear instability in the numerical integration. An ideal numerical experiment simulating the propagation of the equatorial Rossby soliton was performed to test the amplitude and phase error of this new model. The performance of this circulation model was further verified with a regional(northwest Pacific) and a quasi-global(global ocean simulation with the Arctic Ocean excluded) simulation experiments. These two numerical experiments show fairly good agreement with the observations. The maximum time step of stability in these two experiments were also investigated and compared between this model and that model which adopts the leapfrog scheme.
基金The project was supported by National Science Foundation (Grant No. 10471129).
文摘In this paper we propose the finite difference method for the forward-backward heat equation. We use a coarse-mesh second-order central difference scheme at the middle line mesh points and derive the error estimate. Then we discuss the iterative method based on the domain decomposition for our scheme and derive the bounds for the rates of convergence. Finally we present some numerical experiments to support our analysis.
文摘In this paper,we propose a new numerical method which is a least squares approximaton based on pseudospectral method for the Forward-Backward heat equation. The existence and uniqueness of the solution of the least squares approximation are proved. Error estimates for this approximation are given,which show that tile order of convergence depends only on the regularity of tile solution and the right hand of the Forward-Backward heat equation.
基金Supported by the Special Funds for Major State BasicResearch Projects of China (No.G19990 32 80 2 )
文摘The forward-backward heat equation arises in a remarkable variety of physical applications. A non-overlaping domain decomposition method was constructed to obtain numerical solutions of the forward-backward heat equation. The primary advantage is that the method reduces the computation time tremendously. The convergence of the given method is established. The numerical performance shows that the domain decomposition method is effective.
基金the EU for its support to NETMAR project where this work is in progressthe other partners of NETMAR project,and also the“Region Bretagne”for its support.
文摘The aim of this work is to study the impacts of the oil spills on the electromagnetic scattering of the ocean surfaces in bistatic and monostatic configurations. Therefore, in this paper, we will study the influence of the pollutants (oil spills) on the physical and geometrical properties of sea surface. In recent literature, the study of the electromagnetic scattering from contaminated sea surface (sea surface covered by oil spill) was limited in monostatic case. In this paper, we will study this effect in bistatic configuration, which is interested in presence of pollution in sea surface. Indeed, we will start the numerical analysis of the bistatic scattering coefficients of a clean sea surface. Then, we will study the electromagnetic signature from sea surface covered by oil spills in bistatic case using the numerical Forward-Backward Method (FBM). The obtained numerical simulation of bistatic scattering coefficients of clean and contaminated sea surface is studied as a function of various parameters (frequency, incident angle, sea state, type of pollutant…). And the obtained results are also compared with those published in the literature, including those using asymptotic methods.