In wireless sensor networks, topology control plays an important role for data forwarding efficiency in the data gathering applications. In this paper, we present a novel topology control and data forwarding mechanism...In wireless sensor networks, topology control plays an important role for data forwarding efficiency in the data gathering applications. In this paper, we present a novel topology control and data forwarding mechanism called REMUDA, which is designed for a practical indoor parking lot management system. REMUDA forms a tree-based hierarchical network topology which brings as many nodes as possible to be leaf nodes and constructs a virtual cluster structure. Meanwhile, it takes the reliability, stability and path length into account in the tree construction process. Through an experiment in a network of 30 real sensor nodes, we evaluate the performance of REMUDA and compare it with LEPS which is also a practical routing protocol in TinyOS. Experiment results show that REMUDA can achieve better performance than LEPS.展开更多
The behavior of Schottky contacts in AlGaN/GaN high electron mobility transistors (HEMTs) is investigated by temperature-dependent current-voltage (T-I-V) measurements from 300 K to 473 K. The ideality factor and ...The behavior of Schottky contacts in AlGaN/GaN high electron mobility transistors (HEMTs) is investigated by temperature-dependent current-voltage (T-I-V) measurements from 300 K to 473 K. The ideality factor and barrier height determined based on the thermionic emission (TE) theory are found to be strong functions of temperature, while present a great deviation from the theoretical value, which can be expounded by the barrier height inhomogeneities. In order to determine the forward current transport mechanisms, the experimental data are analyzed using numerical fitting method, considering the temperature-dependent series resistance. It is observed that the current flow at room temperature can be attributed to the tunneling mechanism, while thermionic emission current gains a growing proportion with an increase in temperature. Finally, the effective barrier height is derived based on the extracted thermionic emission component, and an evaluation of the density of dislocations is made from the I-V characteristics, giving a value of 1.49 × 10^7 cm^-2.展开更多
Combining named data networking(NDN) and software-defined networking(SDN) has been considered as an important trend and attracted a lot of attention in recent years. Although much work has been carried out on the ...Combining named data networking(NDN) and software-defined networking(SDN) has been considered as an important trend and attracted a lot of attention in recent years. Although much work has been carried out on the integration of NDN and SDN, the forwarding mechanism to solve the inherent problems caused by the flooding scheme and discard of interest packets in traditional NDN is not well considered. To fill this gap, by taking advantage of SDN, we design a novel forwarding mechanism in NDN architecture with distributed controllers, where routing decisions are made globally. Then we show how the forwarding mechanism is operated for interest and data packets. In addition, we propose a novel routing algorithm considering quality of service(QoS) applied in the proposed forwarding mechanism and carried out in controllers. We take both resource consumption and network load balancing into consideration and introduce a genetic algorithm(GA) to solve the QoS constrained routing problem using global network information. Simulation results are presented to demonstrate the performance of the proposed routing scheme.展开更多
Routing is one of the challenging tasks in Delay Tolerant Networks (DTNs), due to the lack of global knowledge and sporadic contacts between nodes. Most existing studies take a greedy scheme in data forwarding proce...Routing is one of the challenging tasks in Delay Tolerant Networks (DTNs), due to the lack of global knowledge and sporadic contacts between nodes. Most existing studies take a greedy scheme in data forwarding process, i.e., only nodes with higher utility values than current carriers can be selected as relays. They lack an in-depth investigation on the main features of the optimal paths in Epidemic. These features are vital to any forwarding scheme that tends to make a trade-off between packet delivery delay and cost. This is mainly because Epidemic provides an upper bound on cost and a lower bound on delivery delay. Therefore, a deep understanding of these features is useful to make informed forwarding decisions. In this paper, we try to explore these features by observing the roles of different social relationships in the optimal paths through a set of real datasets. These datasets provide evidence that strangers have two sides in data forwarding process, and that the importance of strangers shows a decreasing trend along the forwarding paths. Using this heuristic knowledge, we propose STRON, a distributed and lightweight forwarding scheme. The distributed feature makes it very suitable for opportunistic scenarios and the low communication and computation features make it easy to be integrated with state-of-the-art work. The trace-driven simulations obviously confirm its effectiveness, especially in terms of packet delivery delay and cost.展开更多
基金Supported by National Natural Science Foundation of P. R. China (60673178) National Basic Research Program of P.R. China (2006 CB 303000)
文摘In wireless sensor networks, topology control plays an important role for data forwarding efficiency in the data gathering applications. In this paper, we present a novel topology control and data forwarding mechanism called REMUDA, which is designed for a practical indoor parking lot management system. REMUDA forms a tree-based hierarchical network topology which brings as many nodes as possible to be leaf nodes and constructs a virtual cluster structure. Meanwhile, it takes the reliability, stability and path length into account in the tree construction process. Through an experiment in a network of 30 real sensor nodes, we evaluate the performance of REMUDA and compare it with LEPS which is also a practical routing protocol in TinyOS. Experiment results show that REMUDA can achieve better performance than LEPS.
基金supported by the National Natural Science Foundation of China(Grant No.61334002)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory of China(Grant No.ZHD201206)
文摘The behavior of Schottky contacts in AlGaN/GaN high electron mobility transistors (HEMTs) is investigated by temperature-dependent current-voltage (T-I-V) measurements from 300 K to 473 K. The ideality factor and barrier height determined based on the thermionic emission (TE) theory are found to be strong functions of temperature, while present a great deviation from the theoretical value, which can be expounded by the barrier height inhomogeneities. In order to determine the forward current transport mechanisms, the experimental data are analyzed using numerical fitting method, considering the temperature-dependent series resistance. It is observed that the current flow at room temperature can be attributed to the tunneling mechanism, while thermionic emission current gains a growing proportion with an increase in temperature. Finally, the effective barrier height is derived based on the extracted thermionic emission component, and an evaluation of the density of dislocations is made from the I-V characteristics, giving a value of 1.49 × 10^7 cm^-2.
基金supported by the Fundamental Research Funds for the Central Universities,China(No.2018PTB-00-03)the National Natural Science Foundation of China(No.61501042)
文摘Combining named data networking(NDN) and software-defined networking(SDN) has been considered as an important trend and attracted a lot of attention in recent years. Although much work has been carried out on the integration of NDN and SDN, the forwarding mechanism to solve the inherent problems caused by the flooding scheme and discard of interest packets in traditional NDN is not well considered. To fill this gap, by taking advantage of SDN, we design a novel forwarding mechanism in NDN architecture with distributed controllers, where routing decisions are made globally. Then we show how the forwarding mechanism is operated for interest and data packets. In addition, we propose a novel routing algorithm considering quality of service(QoS) applied in the proposed forwarding mechanism and carried out in controllers. We take both resource consumption and network load balancing into consideration and introduce a genetic algorithm(GA) to solve the QoS constrained routing problem using global network information. Simulation results are presented to demonstrate the performance of the proposed routing scheme.
基金supported by the National Basic Research 973 Program of China under Grant No. 2011CB302701the National Science Fund for Distinguished Young Scholars of China under Grant No. 60925010+3 种基金the National Natural Science Foundation of Chinaunder Grant Nos. 61133015, 61003280, and 61272517the Funds for Creative Research Groups of China under Grant No. 61121001the Program for Changjiang Scholars and Innovative Research Team in University of China under Grant No. IRT1049the Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20120005130002
文摘Routing is one of the challenging tasks in Delay Tolerant Networks (DTNs), due to the lack of global knowledge and sporadic contacts between nodes. Most existing studies take a greedy scheme in data forwarding process, i.e., only nodes with higher utility values than current carriers can be selected as relays. They lack an in-depth investigation on the main features of the optimal paths in Epidemic. These features are vital to any forwarding scheme that tends to make a trade-off between packet delivery delay and cost. This is mainly because Epidemic provides an upper bound on cost and a lower bound on delivery delay. Therefore, a deep understanding of these features is useful to make informed forwarding decisions. In this paper, we try to explore these features by observing the roles of different social relationships in the optimal paths through a set of real datasets. These datasets provide evidence that strangers have two sides in data forwarding process, and that the importance of strangers shows a decreasing trend along the forwarding paths. Using this heuristic knowledge, we propose STRON, a distributed and lightweight forwarding scheme. The distributed feature makes it very suitable for opportunistic scenarios and the low communication and computation features make it easy to be integrated with state-of-the-art work. The trace-driven simulations obviously confirm its effectiveness, especially in terms of packet delivery delay and cost.