This study focuses on the mineralogical, geochemical and petrographic characterization of three granite rock samples (LTP, LTS and LTMB) from Foumban, West Region of Cameroon. Fusibility tests were carried out on the ...This study focuses on the mineralogical, geochemical and petrographic characterization of three granite rock samples (LTP, LTS and LTMB) from Foumban, West Region of Cameroon. Fusibility tests were carried out on the samples containing the highest amount of alkali to assess the potential of these materials as fluxing admixture for ceramics. The results show that the granite consists of alkaline feldspars, notably orthoclase and microcline of perthitic micro-texture, plagioclases (in particular albite) and also mafic minerals such as amphibole and pyroxene. The quantity of alkali in the samples is quite high (16.83% for LTS, 17.08% for LTMB and 18.87% for LTP) compared to standard data. Fusibility tests carried out on the samples having the highest alkali content (LTMB and LTP) showed that the vitreous phase appears between 1050°C and 1100°C in these samples when they were heated. The Fe<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> content of LTMB (3.01% and 1.49% respectively) led to a brown colour of its fired product. Therefore, based on their composition, these materials can be used as feldspathic fluxes for the formulation of ceramic products.展开更多
This study focuses on the geochemical and bacteriological investigation of surface and ground water in the Bamoun plateau (Western-Cameroon). During the period from September 2013 to August 2014, 71 samples were colle...This study focuses on the geochemical and bacteriological investigation of surface and ground water in the Bamoun plateau (Western-Cameroon). During the period from September 2013 to August 2014, 71 samples were collected from two springs, one borehole, four wells and the Nchi stream for analysis of major elements. In order to obtain the characteristics of the various species of bacteria, 7 samples were selected. The analytical method adopted for this study is the conventional hydrochemical technic and multivariate statistical analysis, coupled with the hydrogeochemical modelling. The results revealed that, water from the zone under study are acidic to basic, very weakly to weakly mineralized. Four types of water were identified: 1) CaMg-HCO<sub>3</sub>;2) CaMg-Cl-SO<sub>4</sub>;3) NaCl-SO<sub>4</sub> and 4) NaK-HCO<sub>3</sub>. The major elements were all listed in the World Health Organization guidelines for drinking water quality, except for nitrates which was found at a concentration > 50 mg /l <span style="white-space:nowrap;">NO<sup>-</sup><sub style="margin-left:-7px;">3</sub> </span>in the borehole F401. As for the hydrobiological aspect, the entire sample contained all the bacteriological species except for spring S301 and well P401. According to the hydrogeochemical modelling, the Gibbs model and multivariate statistical tests, the quality of surface and ground water of the Foumban locality is influenced by two important factors: 1) the natural factors characterized by the water-rock interaction, evapotranspiration/crystallization, 2) the anthropogenic factors such as: uncontrolled discharges of liquid and solid effluents of all kinds and without any prior treatment within the ground and the strong urbanization accompanied by lack of sanitation and insufficient care.展开更多
文摘This study focuses on the mineralogical, geochemical and petrographic characterization of three granite rock samples (LTP, LTS and LTMB) from Foumban, West Region of Cameroon. Fusibility tests were carried out on the samples containing the highest amount of alkali to assess the potential of these materials as fluxing admixture for ceramics. The results show that the granite consists of alkaline feldspars, notably orthoclase and microcline of perthitic micro-texture, plagioclases (in particular albite) and also mafic minerals such as amphibole and pyroxene. The quantity of alkali in the samples is quite high (16.83% for LTS, 17.08% for LTMB and 18.87% for LTP) compared to standard data. Fusibility tests carried out on the samples having the highest alkali content (LTMB and LTP) showed that the vitreous phase appears between 1050°C and 1100°C in these samples when they were heated. The Fe<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> content of LTMB (3.01% and 1.49% respectively) led to a brown colour of its fired product. Therefore, based on their composition, these materials can be used as feldspathic fluxes for the formulation of ceramic products.
文摘This study focuses on the geochemical and bacteriological investigation of surface and ground water in the Bamoun plateau (Western-Cameroon). During the period from September 2013 to August 2014, 71 samples were collected from two springs, one borehole, four wells and the Nchi stream for analysis of major elements. In order to obtain the characteristics of the various species of bacteria, 7 samples were selected. The analytical method adopted for this study is the conventional hydrochemical technic and multivariate statistical analysis, coupled with the hydrogeochemical modelling. The results revealed that, water from the zone under study are acidic to basic, very weakly to weakly mineralized. Four types of water were identified: 1) CaMg-HCO<sub>3</sub>;2) CaMg-Cl-SO<sub>4</sub>;3) NaCl-SO<sub>4</sub> and 4) NaK-HCO<sub>3</sub>. The major elements were all listed in the World Health Organization guidelines for drinking water quality, except for nitrates which was found at a concentration > 50 mg /l <span style="white-space:nowrap;">NO<sup>-</sup><sub style="margin-left:-7px;">3</sub> </span>in the borehole F401. As for the hydrobiological aspect, the entire sample contained all the bacteriological species except for spring S301 and well P401. According to the hydrogeochemical modelling, the Gibbs model and multivariate statistical tests, the quality of surface and ground water of the Foumban locality is influenced by two important factors: 1) the natural factors characterized by the water-rock interaction, evapotranspiration/crystallization, 2) the anthropogenic factors such as: uncontrolled discharges of liquid and solid effluents of all kinds and without any prior treatment within the ground and the strong urbanization accompanied by lack of sanitation and insufficient care.