This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assim...This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.展开更多
A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the ...A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.展开更多
In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) d...In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) data assimilation scheme, a smoothing term, equivalent to a penalty term, is introduced into the cost function to serve as a means of troubleshooting. A theoretical analysis is first performed to figure out what on earth results in the issue of "bull-eye", and then the meaning of such smoothing term is elucidated and the uniqueness of solution of the multigrid 3DVAR with the smoothing term added is discussed through the theoretical deduction for one-dimensional (1D) case, and two idealized data assimilation experiments (one- and two-dimensional (2D) cases). By exploring the relationship between the smoothing term and the recursive filter theoretically and practically, it is revealed why satisfied analysis results can be achieved by using such proposed solution for the issue of the multigrid 3DVAR.展开更多
Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread atte...Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread attention from the public because it caused catastrophic damage in China. Several numerical studies have shown that many forecast models, including Pennsylvania State University National Center for Atmospheric Research’s fifth-generation mesoscale model (MM5), failed to simulate the heavy precipitation over the Yangzi River valley. This study demonstrates that with the optimal initial conditions from the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) system, MM5 can successfully reproduce these observed rainfall amounts and can capture many important mesoscale features, including the southwestward shear line and the low-level jet stream. The study also indicates that the failure of previous forecasts can be mainly attributed to the lack of mesoscale details in the initial conditions of the models.展开更多
The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).A...The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).Alternatively,physical space analysis system(4D-PSAS)is proposed to reduce the computation cost,in which the 4D-Var problem is solved in physical space(i.e.,observation space).In this study,the conjugate gradient(CG)algorithm,implemented in the 4D-PSAS system is evaluated and it is found that the non-monotonic change of the gradient norm of 4D-PSAS cost function causes artificial oscillations of cost function in the iteration process.The reason of non-monotonic variation of gradient norm in 4D-PSAS is then analyzed.In order to overcome the non-monotonic variation of gradient norm,a new algorithm,Minimum Residual(MINRES)algorithm,is implemented in the process of assimilation iteration in this study.Our experimental results show that the improved 4D-PSAS with the MINRES algorithm guarantees the monotonic reduction of gradient norm of cost function,greatly improves the convergence properties of 4D-PSAS as well,and significantly restrains the numerical noises associated with the traditional 4D-PSAS system.展开更多
Different choices of control variables in variational assimilation can bring about different influences on the analyzed atmospheric state. Based on the WRF model's three-dimensional variational assimilation system, t...Different choices of control variables in variational assimilation can bring about different influences on the analyzed atmospheric state. Based on the WRF model's three-dimensional variational assimilation system, this study compares the be- havior of two momentum control variable options-streamfunction velocity potential (ψ-χ) and horizontal wind components (U-V)-in radar wind data assimilation for a squall line case that occurred in Jiangsu Province on 24 August 2014. The wind increment from the single observation test shows that the ψ-χ control variable scheme produces negative increments in the neighborhood around the observation point because streamfunction and velocity potential preserve integrals of velocity. On the contrary, the U-V control variable scheme objectively reflects the information of the observation itself. Furthermore, radial velocity data from 17 Doppler radars in eastern China are assimilated. As compared to the impact of conventional observation, the assimilation of radar radial velocity based on the U-V control variable scheme significantly improves the mesoscale dynamic field in the initial condition. The enhanced low-level jet stream, water vapor convergence and low-level wind shear result in better squall line forecasting. However, the ψ-χ control variable scheme generates a discontinuous wind field and unrealistic convergence/divergence in the analyzed field, which lead to a degraded precipitation forecast.展开更多
Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Vat) data assimilation system was developed for ...Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Vat) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer (Te), which is empirically and explicitly related to sea level (SL) variation. The strength of the thermocline effect on SST (referred to simply as "the thermocline effect") is represented by an introduced parameter, (l'Te. A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having their initial condition optimized only, and having their initial condition plus this additional model parameter optimized, are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameters and initial conditions together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Vat data assimilation system implemented in the ICM are also discussed.展开更多
A cold cloud assimilation scheme was developed that fully considers the water substances,i.e.,water vapor,cloud water,rain,ice,snow,and graupel,based on the single-moment WSM6 microphysical scheme and four-dimensional...A cold cloud assimilation scheme was developed that fully considers the water substances,i.e.,water vapor,cloud water,rain,ice,snow,and graupel,based on the single-moment WSM6 microphysical scheme and four-dimensional variational(4D-Var)data assimilation in the Weather Research and Forecasting data assimilation(WRFDA)system.The verification of the regularized WSM6 and its tangent linearity model(TLM)and adjoint mode model(ADM)was proven successful.Two groups of single observation and real sounding data assimilation experiments were set up to further verify the correctness of the assimilation scheme.The results showed that the consideration of ice,snow,and graupel in the assimilation system of the 4D-Var,as opposed to their omission in the warm rain Kessler scheme,allowed the water substances to be reasonably updated,further improving the forecast.Before it can be further applied in the assimilation of observational data,radar reflectivities,and satellite radiances,the cold cloud assimilation scheme needs additional verification,including using conventional ground and sounding observations in the 4D-Var assimilation system.展开更多
This study aims at assessing the relative impacts of four major components of the tropical Pacific Ocean observing system on assimilation of temperature and salinity fields. Observations were collected over a period b...This study aims at assessing the relative impacts of four major components of the tropical Pacific Ocean observing system on assimilation of temperature and salinity fields. Observations were collected over a period between January 2001 through June 2003 including temperature data from the expendable bathythermographs (XBT), thermistor data from the Tropical Ocean Global Atmosphere Tropical Atmosphere-Ocean (TOGA-TAO) mooring array, sea level anomalies from the Topex/Poseidon and Jason-1 altimetry (T/P-J), and temperature and salinity profiles from the Array for Real-time Geostrophic Oceanography (ARGO) floats. An efficient three-dimensional variational analysis-based method was introduced to assimilate the above data into the tropical-Pacific circulation model. To evaluate the impact of the individual component of the observing system, four observation system experiments were carried out. The experiment that assimilated all four components of the observing system was taken as the reference. The other three experiments were implemented by withholding one of the four components. Results show that the spatial distribution of the data influences its relative contribution. XBT observations produce the most distinguished effects on temperature analyses in the off-equatorial region due to the large amount of measurements and high quality. Similarly, the impact of TAO is dominant in the equatorial region due to the focus of the spatial distribution. The Topex/Poseidon-Jason-1 can be highly complementary where the XBT and TAO observations are sparse. The contribution of XBT or TAO on the assimilated salinity is made by the model dynamics because no salinity observations from them are assimilated. Therefore, T/P-J, as a main source for providing salinity data, has been shown to have greater impacts than either XBT or TAO on the salinity analysis. Although ARGO includes the subsurface observations, the relatively smaller number of observation makes it have the smallest contribution to the assimilation system.展开更多
The impact of diabatic processes on 4-dimensional variational data assimilation (4D-Var) was studied using the 1995 version of NCEP's global spectral model with and without full physics.The adjoint was coded manua...The impact of diabatic processes on 4-dimensional variational data assimilation (4D-Var) was studied using the 1995 version of NCEP's global spectral model with and without full physics.The adjoint was coded manually.A cost function measuring spectral errors of 6-hour forecasts to 'observation' (the NCEP reanalysis data) was minimized using the L-BFGS (the limited memory quasi-Newton algorithm developed by Broyden,Fletcher,Goldfard and Shanno) for optimizing parameters and initial conditions.Minimization of the cost function constrained by an adiabatic version of the NCEP global model converged to a minimum with a significant amount of decrease in the value of the cost function.Minimization of the cost function using the diabatic model, however,failed after a few iterations due to discontinuities introduced by physical parameterizations.Examination of the convergence of the cost function in different spectral domains reveals that the large-scale flow is adjusted during the first 10 iterations,in which discontinuous diabatic parameterizations play very little role.The adjustment produced by the minimization gradually moves to relatively smaller scales between 10-20th iterations.During this transition period,discontinuities in the cost function produced by 'on-off' switches in the physical parameterizations caused the cost function to stay in a shallow local minimum instead of continuously decreasing toward a deeper minimum. Next,a mixed 4D-Var scheme is tested in which large-scale flows are first adiabatically adjusted to a sufficient level,followed by a diabatic adjustment introduced after 10 to 20 iterations. The mixed 4D-Var produced a closer fit of analysis to observations,with 38% and 41% more decrease in the values of the cost function and the norm of gradient,respectively,than the standard diabatic 4D-Var,while the CPU time is reduced by 21%.The resulting optimal initial conditions improve the short-range forecast skills of 48-hour statistics.The detrimental effect of parameterization discontinuities on minimization was also reduced.展开更多
A new data assimilation method called the explicit four-dimensional variational (4DVAR) method is proposed. In this method, the singular value decomposition (SVD) is used to construct the orthogonal basis vectors from...A new data assimilation method called the explicit four-dimensional variational (4DVAR) method is proposed. In this method, the singular value decomposition (SVD) is used to construct the orthogonal basis vectors from a forecast ensemble in a 4D space. The basis vectors represent not only the spatial structure of the analysis variables but also the temporal evolution. After the analysis variables are ex-pressed by a truncated expansion of the basis vectors in the 4D space, the control variables in the cost function appear explicitly, so that the adjoint model, which is used to derive the gradient of cost func-tion with respect to the control variables, is no longer needed. The new technique significantly simpli-fies the data assimilation process. The advantage of the proposed method is demonstrated by several experiments using a shallow water numerical model and the results are compared with those of the conventional 4DVAR. It is shown that when the observation points are very dense, the conventional 4DVAR is better than the proposed method. However, when the observation points are sparse, the proposed method performs better. The sensitivity of the proposed method with respect to errors in the observations and the numerical model is lower than that of the conventional method.展开更多
A method has been presented to improve ensemble forecast by utilizing these initial members generated by four-dimensional variational data assimilation (4-D VDA), to conquer limitation of those initial members generat...A method has been presented to improve ensemble forecast by utilizing these initial members generated by four-dimensional variational data assimilation (4-D VDA), to conquer limitation of those initial members generated by Monte Carlo forecast (MCF) or lagged average forecast (LAF). This method possesses significant statistical characteristic of MCF, and by virtue of LAF that contains multi-time information and its initial members are harmonic with展开更多
A large number of observational analyses have shown that lightning data can be used to indicate areas of deep convection. It is important to assimilate observed lightning data into numerical models, so that more small...A large number of observational analyses have shown that lightning data can be used to indicate areas of deep convection. It is important to assimilate observed lightning data into numerical models, so that more small-scale information can be incorporated to improve the quality of the initial condition and the subsequent forecasts. In this study, the empirical relationship between flash rate, water vapor mixing ratio, and graupel mixing ratio was used to adjust the model relative humidity, which was then assimilated by using the three-dimensional variational data assimilation system of the Weather Research and Forecasting model in cycling mode at 10-min intervals. To find the appropriate assimilation time-window length that yielded significant improvement in both the initial conditions and subsequent forecasts, four experiments with different assimilation time-window lengths were conducted for a squall line case that occurred on 10 July 2007 in North China. It was found that 60 min was the appropriate assimilation time-window length for this case, and longer assimilation window length was unnecessary since no further improvement was present. Forecasts of 1-h accumulated precipitation during the assimilation period and the subsequent 3-h accumulated precipitation were significantly improved compared with the control experiment without lightning data assimilation. The simulated reflectivity was optimal after 30 min of the forecast, it remained optimal during the following 42 min, and the positive effect from lightning data assimilation began to diminish after 72 min of the forecast. Overall,the improvement from lightning data assimilation can be maintained for about 3 h.展开更多
The key mathematics and applications of various modern atmospheric/oceanicdata assimilation methods including Optimal Interpolation (OI), 4-dimensional variational approach(4D-Var) and filters were systematically revi...The key mathematics and applications of various modern atmospheric/oceanicdata assimilation methods including Optimal Interpolation (OI), 4-dimensional variational approach(4D-Var) and filters were systematically reviewed and classified. Based on the data assimilationphilosophy, i. e. , using model dynamics to extract the observational information, the commoncharacter of the problem, such as the probabilistic nature of the evolution of theatmospheric/oceanic system, noisy and irregularly spaced observations, and the advantages anddisadvantages of these data assimilation algorithms, were discussed. In the filtering framework, allmodern data assimilation algorithms were unified: OI/3D-Var is a stationary filter, 4D-Var is alinear (Kalman) filter and an ensemble of Kalman filters is able to construct a nonlinear filter.The nonlinear filter such as the Ensemble Kalman Filter (EN-KF), Ensemble Adjustment Kalman Filter(EAKF) and Ensemble Transformation Kalman Filter (ETKF) can, to some extent, account for thenon-Gaussian information of the prior distribution from the model. The flow-dependent covarianceestimated by an ensemble filter may be introduced to OI and 4D-Var to improve these traditionalalgorithms. In practice, the performance of algorithms may depend on the specific numerical modeland the choice of algorithm may depend on the specific problem. However, the unification ofalgorithms allows us to establish a unified test system to evaluate these algorithms, which providesmore insights into data assimilation philosophies and helps improve data assimilation techniques.展开更多
基金sponsored by the U.S. National Science Foundation (Grant No.ATM0205599)the U.S. Offce of Navy Research under Grant N000140410471Dr. James A. Hansen was partially supported by US Offce of Naval Research (Grant No. N00014-06-1-0500)
文摘This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.
基金supported by the National Natural Science Foundation of China(Grant Nos.41490644,41475101 and 41421005)the CAS Strategic Priority Project(the Western Pacific Ocean System+2 种基金Project Nos.XDA11010105,XDA11020306 and XDA11010301)the NSFC-Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401)the NSFC Innovative Group Grant(Project No.41421005)
文摘A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.
基金The National Basic Research Program of China under contract No. 2013CB430304the National High-Tech R&D Program of China under contract No. 2013AA09A505the National Natural Science Foundation of China under contract Nos 41030854,40906015,40906016,41106005 and 41176003
文摘In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) data assimilation scheme, a smoothing term, equivalent to a penalty term, is introduced into the cost function to serve as a means of troubleshooting. A theoretical analysis is first performed to figure out what on earth results in the issue of "bull-eye", and then the meaning of such smoothing term is elucidated and the uniqueness of solution of the multigrid 3DVAR with the smoothing term added is discussed through the theoretical deduction for one-dimensional (1D) case, and two idealized data assimilation experiments (one- and two-dimensional (2D) cases). By exploring the relationship between the smoothing term and the recursive filter theoretically and practically, it is revealed why satisfied analysis results can be achieved by using such proposed solution for the issue of the multigrid 3DVAR.
基金the National Basic Research Program (973 Program) (No.2010CB 951604)the China Meteorological Administration for the R&D Special Fund for Public Welfare Industry (meteorology) [Grant No. GYHY(QX)200906009]+1 种基金the National High Technology Research and Development Program of China (863 Program) (No. 2010AA012304)the LASG free exploration fund
文摘Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread attention from the public because it caused catastrophic damage in China. Several numerical studies have shown that many forecast models, including Pennsylvania State University National Center for Atmospheric Research’s fifth-generation mesoscale model (MM5), failed to simulate the heavy precipitation over the Yangzi River valley. This study demonstrates that with the optimal initial conditions from the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) system, MM5 can successfully reproduce these observed rainfall amounts and can capture many important mesoscale features, including the southwestward shear line and the low-level jet stream. The study also indicates that the failure of previous forecasts can be mainly attributed to the lack of mesoscale details in the initial conditions of the models.
基金The National Key Research and Development Program of China under contract Nos 2017YFC1501803 and2018YFC1506903the National Natural Science Foundation of China under contract Nos 91730304,41475021 and 41575026
文摘The four-dimensional variational assimilation(4D-Var)has been widely used in meteorological and oceanographic data assimilation.This method is usually implemented in the model space,known as primal approach(P4D-Var).Alternatively,physical space analysis system(4D-PSAS)is proposed to reduce the computation cost,in which the 4D-Var problem is solved in physical space(i.e.,observation space).In this study,the conjugate gradient(CG)algorithm,implemented in the 4D-PSAS system is evaluated and it is found that the non-monotonic change of the gradient norm of 4D-PSAS cost function causes artificial oscillations of cost function in the iteration process.The reason of non-monotonic variation of gradient norm in 4D-PSAS is then analyzed.In order to overcome the non-monotonic variation of gradient norm,a new algorithm,Minimum Residual(MINRES)algorithm,is implemented in the process of assimilation iteration in this study.Our experimental results show that the improved 4D-PSAS with the MINRES algorithm guarantees the monotonic reduction of gradient norm of cost function,greatly improves the convergence properties of 4D-PSAS as well,and significantly restrains the numerical noises associated with the traditional 4D-PSAS system.
基金jointly supported by the National Fundamental Research(973)Program of China(Grant Nos.2015CB452801 and 2013CB430100)the Jiangsu Meteorological Bureau Research Fund Project for the Youth(Grant Nos.Q201514 and Q201407)+3 种基金the Shandong Institute of Meteorological Sciences Research Fund Project(Grant No.SDQXKF2015M10)the Jiangsu Provincial Key Technology R&D Program(Grant No.BE2013730)the Jiangsu Meteorological Bureau Key Research Fund Project(Grant No.KZ201502)the National Key Technology R&D Program(Grant No.2014BAG01B01)
文摘Different choices of control variables in variational assimilation can bring about different influences on the analyzed atmospheric state. Based on the WRF model's three-dimensional variational assimilation system, this study compares the be- havior of two momentum control variable options-streamfunction velocity potential (ψ-χ) and horizontal wind components (U-V)-in radar wind data assimilation for a squall line case that occurred in Jiangsu Province on 24 August 2014. The wind increment from the single observation test shows that the ψ-χ control variable scheme produces negative increments in the neighborhood around the observation point because streamfunction and velocity potential preserve integrals of velocity. On the contrary, the U-V control variable scheme objectively reflects the information of the observation itself. Furthermore, radial velocity data from 17 Doppler radars in eastern China are assimilated. As compared to the impact of conventional observation, the assimilation of radar radial velocity based on the U-V control variable scheme significantly improves the mesoscale dynamic field in the initial condition. The enhanced low-level jet stream, water vapor convergence and low-level wind shear result in better squall line forecasting. However, the ψ-χ control variable scheme generates a discontinuous wind field and unrealistic convergence/divergence in the analyzed field, which lead to a degraded precipitation forecast.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41705082, 41475101, 41690122(41690120))a Chinese Academy of Sciences Strategic Priority Project-the Western Pacific Ocean System (Grant Nos. XDA11010105 and XDA11020306)+1 种基金the National Programme on Global Change and Air–Sea Interaction (Grant Nos. GASI-IPOVAI06 and GASI-IPOVAI-01-01)the China Postdoctoral Science Foundation, and a Qingdao Postdoctoral Application Research Project
文摘Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Vat) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer (Te), which is empirically and explicitly related to sea level (SL) variation. The strength of the thermocline effect on SST (referred to simply as "the thermocline effect") is represented by an introduced parameter, (l'Te. A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having their initial condition optimized only, and having their initial condition plus this additional model parameter optimized, are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameters and initial conditions together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Vat data assimilation system implemented in the ICM are also discussed.
基金supported by the National Key R&D Program of China under Grant Nos.2018YFC1507302 and 2018YFC1506803National Natural Science Foundation of China No.42275171+1 种基金the Liaoning Province Key R&D Program of Liaoning of China under Grant No.2020JH2/10300091the Bohai Rim Meteorological Science Collaborative Innovation Fund under Grant No.QYXM201901.
文摘A cold cloud assimilation scheme was developed that fully considers the water substances,i.e.,water vapor,cloud water,rain,ice,snow,and graupel,based on the single-moment WSM6 microphysical scheme and four-dimensional variational(4D-Var)data assimilation in the Weather Research and Forecasting data assimilation(WRFDA)system.The verification of the regularized WSM6 and its tangent linearity model(TLM)and adjoint mode model(ADM)was proven successful.Two groups of single observation and real sounding data assimilation experiments were set up to further verify the correctness of the assimilation scheme.The results showed that the consideration of ice,snow,and graupel in the assimilation system of the 4D-Var,as opposed to their omission in the warm rain Kessler scheme,allowed the water substances to be reasonably updated,further improving the forecast.Before it can be further applied in the assimilation of observational data,radar reflectivities,and satellite radiances,the cold cloud assimilation scheme needs additional verification,including using conventional ground and sounding observations in the 4D-Var assimilation system.
基金supported by the 973 Program(Grant No.2006CB403606)the National Natural Science Foundation of China(Grant No.40606008).
文摘This study aims at assessing the relative impacts of four major components of the tropical Pacific Ocean observing system on assimilation of temperature and salinity fields. Observations were collected over a period between January 2001 through June 2003 including temperature data from the expendable bathythermographs (XBT), thermistor data from the Tropical Ocean Global Atmosphere Tropical Atmosphere-Ocean (TOGA-TAO) mooring array, sea level anomalies from the Topex/Poseidon and Jason-1 altimetry (T/P-J), and temperature and salinity profiles from the Array for Real-time Geostrophic Oceanography (ARGO) floats. An efficient three-dimensional variational analysis-based method was introduced to assimilate the above data into the tropical-Pacific circulation model. To evaluate the impact of the individual component of the observing system, four observation system experiments were carried out. The experiment that assimilated all four components of the observing system was taken as the reference. The other three experiments were implemented by withholding one of the four components. Results show that the spatial distribution of the data influences its relative contribution. XBT observations produce the most distinguished effects on temperature analyses in the off-equatorial region due to the large amount of measurements and high quality. Similarly, the impact of TAO is dominant in the equatorial region due to the focus of the spatial distribution. The Topex/Poseidon-Jason-1 can be highly complementary where the XBT and TAO observations are sparse. The contribution of XBT or TAO on the assimilated salinity is made by the model dynamics because no salinity observations from them are assimilated. Therefore, T/P-J, as a main source for providing salinity data, has been shown to have greater impacts than either XBT or TAO on the salinity analysis. Although ARGO includes the subsurface observations, the relatively smaller number of observation makes it have the smallest contribution to the assimilation system.
基金NSF grant ATM-9812729NOAA grant NA77WA0571Qiao is also supported by the Chinese National Key Basic Research Project under Contract G1999043809
文摘The impact of diabatic processes on 4-dimensional variational data assimilation (4D-Var) was studied using the 1995 version of NCEP's global spectral model with and without full physics.The adjoint was coded manually.A cost function measuring spectral errors of 6-hour forecasts to 'observation' (the NCEP reanalysis data) was minimized using the L-BFGS (the limited memory quasi-Newton algorithm developed by Broyden,Fletcher,Goldfard and Shanno) for optimizing parameters and initial conditions.Minimization of the cost function constrained by an adiabatic version of the NCEP global model converged to a minimum with a significant amount of decrease in the value of the cost function.Minimization of the cost function using the diabatic model, however,failed after a few iterations due to discontinuities introduced by physical parameterizations.Examination of the convergence of the cost function in different spectral domains reveals that the large-scale flow is adjusted during the first 10 iterations,in which discontinuous diabatic parameterizations play very little role.The adjustment produced by the minimization gradually moves to relatively smaller scales between 10-20th iterations.During this transition period,discontinuities in the cost function produced by 'on-off' switches in the physical parameterizations caused the cost function to stay in a shallow local minimum instead of continuously decreasing toward a deeper minimum. Next,a mixed 4D-Var scheme is tested in which large-scale flows are first adiabatically adjusted to a sufficient level,followed by a diabatic adjustment introduced after 10 to 20 iterations. The mixed 4D-Var produced a closer fit of analysis to observations,with 38% and 41% more decrease in the values of the cost function and the norm of gradient,respectively,than the standard diabatic 4D-Var,while the CPU time is reduced by 21%.The resulting optimal initial conditions improve the short-range forecast skills of 48-hour statistics.The detrimental effect of parameterization discontinuities on minimization was also reduced.
基金the 973 Program (Grant No. 2004CB418305)the National Natural Science Foundation of China (Grant No. 40575049)
文摘A new data assimilation method called the explicit four-dimensional variational (4DVAR) method is proposed. In this method, the singular value decomposition (SVD) is used to construct the orthogonal basis vectors from a forecast ensemble in a 4D space. The basis vectors represent not only the spatial structure of the analysis variables but also the temporal evolution. After the analysis variables are ex-pressed by a truncated expansion of the basis vectors in the 4D space, the control variables in the cost function appear explicitly, so that the adjoint model, which is used to derive the gradient of cost func-tion with respect to the control variables, is no longer needed. The new technique significantly simpli-fies the data assimilation process. The advantage of the proposed method is demonstrated by several experiments using a shallow water numerical model and the results are compared with those of the conventional 4DVAR. It is shown that when the observation points are very dense, the conventional 4DVAR is better than the proposed method. However, when the observation points are sparse, the proposed method performs better. The sensitivity of the proposed method with respect to errors in the observations and the numerical model is lower than that of the conventional method.
文摘A method has been presented to improve ensemble forecast by utilizing these initial members generated by four-dimensional variational data assimilation (4-D VDA), to conquer limitation of those initial members generated by Monte Carlo forecast (MCF) or lagged average forecast (LAF). This method possesses significant statistical characteristic of MCF, and by virtue of LAF that contains multi-time information and its initial members are harmonic with
基金National Key Basic Research and Development(973)Program of China(2014CB441406)National Natural Science Foundation of China(91537209 and 41675001)Basic Research Fund of Chinese Academy of Meteorological Sciences(2016Z002and 2016Y008)
文摘A large number of observational analyses have shown that lightning data can be used to indicate areas of deep convection. It is important to assimilate observed lightning data into numerical models, so that more small-scale information can be incorporated to improve the quality of the initial condition and the subsequent forecasts. In this study, the empirical relationship between flash rate, water vapor mixing ratio, and graupel mixing ratio was used to adjust the model relative humidity, which was then assimilated by using the three-dimensional variational data assimilation system of the Weather Research and Forecasting model in cycling mode at 10-min intervals. To find the appropriate assimilation time-window length that yielded significant improvement in both the initial conditions and subsequent forecasts, four experiments with different assimilation time-window lengths were conducted for a squall line case that occurred on 10 July 2007 in North China. It was found that 60 min was the appropriate assimilation time-window length for this case, and longer assimilation window length was unnecessary since no further improvement was present. Forecasts of 1-h accumulated precipitation during the assimilation period and the subsequent 3-h accumulated precipitation were significantly improved compared with the control experiment without lightning data assimilation. The simulated reflectivity was optimal after 30 min of the forecast, it remained optimal during the following 42 min, and the positive effect from lightning data assimilation began to diminish after 72 min of the forecast. Overall,the improvement from lightning data assimilation can be maintained for about 3 h.
文摘The key mathematics and applications of various modern atmospheric/oceanicdata assimilation methods including Optimal Interpolation (OI), 4-dimensional variational approach(4D-Var) and filters were systematically reviewed and classified. Based on the data assimilationphilosophy, i. e. , using model dynamics to extract the observational information, the commoncharacter of the problem, such as the probabilistic nature of the evolution of theatmospheric/oceanic system, noisy and irregularly spaced observations, and the advantages anddisadvantages of these data assimilation algorithms, were discussed. In the filtering framework, allmodern data assimilation algorithms were unified: OI/3D-Var is a stationary filter, 4D-Var is alinear (Kalman) filter and an ensemble of Kalman filters is able to construct a nonlinear filter.The nonlinear filter such as the Ensemble Kalman Filter (EN-KF), Ensemble Adjustment Kalman Filter(EAKF) and Ensemble Transformation Kalman Filter (ETKF) can, to some extent, account for thenon-Gaussian information of the prior distribution from the model. The flow-dependent covarianceestimated by an ensemble filter may be introduced to OI and 4D-Var to improve these traditionalalgorithms. In practice, the performance of algorithms may depend on the specific numerical modeland the choice of algorithm may depend on the specific problem. However, the unification ofalgorithms allows us to establish a unified test system to evaluate these algorithms, which providesmore insights into data assimilation philosophies and helps improve data assimilation techniques.