Glasses are known to possess low-frequency excess modes beyond the Debye prediction.For decades,it has been assumed that evolution of low-frequency density of excess modes D(ω) with frequency ω follows a power-law s...Glasses are known to possess low-frequency excess modes beyond the Debye prediction.For decades,it has been assumed that evolution of low-frequency density of excess modes D(ω) with frequency ω follows a power-law scaling:D(ω)~ω~γ.However,it remains debated on the value of γ at low frequencies below the first phonon-like mode in finitesize glasses.Early simulation studies reported γ=4 at low frequencies in two-(2D),three-(3D),and four-dimensional(4D)glasses,whereas recent observations in 2D and 3D glasses suggested γ=3.5 in a lower-frequency regime.It is uncertain whether the low-frequency scaling of D(ω)~ω^(3.5) could be generalized to 4D glasses.Here,we conduct numerical simulation studies of excess modes at frequencies below the first phonon-like mode in 4D model glasses.It is found that the system size dependence of D(ω) below the first phonon-like mode varies with spatial dimensions:D(ω) increases in2D glasses but decreases in 3D and 4D glasses as the system size increases.Furthermore,we demonstrate that the ω^(3.5)scaling,rather than the ω~4 scaling,works in the lowest-frequency regime accessed in 4D glasses,regardless of interaction potentials and system sizes examined.Therefore,our findings in 4D glasses,combined with previous results in 2D and 3D glasses,suggest a common low-frequency scaling of D(ω)~ ω^3.5) below the first phonon-like mode across different spatial dimensions,which would inspire further theoretical studies.展开更多
BACKGROUND Mitral valvuloplasty using artificial chordae tendineae represents an effective surgical approach for treating mitral regurgitation.Achieving precise measurements of artificial chordae tendineae length(CL)i...BACKGROUND Mitral valvuloplasty using artificial chordae tendineae represents an effective surgical approach for treating mitral regurgitation.Achieving precise measurements of artificial chordae tendineae length(CL)is an important factor in the procedure;however,no objective index currently exists to facilitate this measurement.Therefore,preoperative assessment of CL is critical for surgical planning and support.Four-dimensional x-ray micro-computed tomography(4D-CT)may be useful for accurate CL measurement considering that it allows for dynamic three-dimensional(3D)evaluation compared to that with transthoracic echocardiography,a conventional inspection method.AIM To investigate the behavior and length of mitral chordae tendineae during systole using 4D-CT.METHODS Eleven adults aged>70 years without mitral valve disease were evaluated.A 64-slice CT scanner was used to capture 20 phases in the cardiac cycle in electrocardiographic synchronization.The length of the primary chordae tendineae was measured from early systole to early diastole using the 3D image.The primary chordae tendineae originating from the anterior papillary muscle and attached to the A1-2 region and those from the posterior papillary muscle and attached to the A2-3 region were designated as cA and cP,respectively.The behavior and maximum lengths[cA(ma),cP(max)]were compared,and the correlation with body surface area(BSA)was evaluated.RESULTS In all cases,the mitral anterior leaflet chordae tendineae could be measured.In most cases,the cA and cP chordae tendineae could be measured visually.The mean cA(max)and cP(max)were 20.2 mm±1.95 mm and 23.5 mm±4.06 mm,respectively.cP(max)was significantly longer.The correlation coefficients(r)with BSA were 0.60 and 0.78 for cA(max)and cP(max),respectively.Both cA and cP exhibited constant variation in CL during systole,with a maximum 1.16-fold increase in cA and a 1.23-fold increase in cP from early to mid-systole.For cP,CL reached a plateau at 15%and remained elongated until end-systole,whereas for cA,after peaking at 15%,CL shortened slightly and then moved toward its peak again as end-systole approached.CONCLUSION The study suggests that 4D-CT is a valuable tool for accurate measurement of both the length and behavior of chordae tendineae within the anterior leaflet of the mitral valve.展开更多
In the common theory of the Universe, the redshift of the light wavelength from distant stars indicates the speed of the star. In this study, the model of the Universe is the surface volume of the four-dimensional sph...In the common theory of the Universe, the redshift of the light wavelength from distant stars indicates the speed of the star. In this study, the model of the Universe is the surface volume of the four-dimensional sphere, and the shape of the Universe results in the most of the redshift of light wavelength. Therefore, there is no dark energy accelerating the Universe. The surface of the four-dimensional sphere is a volume, and this volume is a good model for the Universe. The surface volume of the four-dimensional sphere has been explained by a model of four-dimensional cube, within which the forming of surface volume can be easily shown. The model of four-dimensional cube containing six side cubes is ingenious for explaining the structure of the four-dimensional Universe, but it is not enough because the four-dimensional cube has not six side cubes, but eight side cubes. Therefore, in this study a better method has been created to construct the four-dimensional cube. Our three-dimensional Universe is the surface of the four-dimensional sphere Universe. The volume of our three-dimensional Universe is finite, and beneath it is the infinite volume four-dimensional Super Universe. Two important basic formulae have been derived: The surface volume of the four-dimensional sphere is π<sup>3</sup>R<sup>3</sup> in which R is the radius of the sphere, and the fourth-power volume of the four-dimensional sphere is 1/4 π<sup>3</sup>R<sup>4</sup>. The volume of the Universe has been calculated π<sup>3</sup>R<sup>3</sup> = 62 × 10<sup>30</sup> ly<sup>3</sup>. Time as the fourth dimension of the space takes effect only near the speed of light, and therefore it has been ignored in this study.展开更多
This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assim...This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.展开更多
A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the ...A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.展开更多
Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential...Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential element in cardiovascular and abdominal imaging.In addition to sonography and computer tomography,MRI is a valuable tool for diagnosing cardiovascular and abdominal diseases,for determining disease severity,and for assessing therapeutic success.MRI techniques have improved over the last few decades,revealing not just morphologic information,but functional information about perfusion,diffusion and hemodynamics as well.Four-dimensional(4D)flow MRI,a time-resolved phase contrast-MRI with three-dimensional(3D)anatomic coverage and velocity encoding along all three flow directions has been used to comprehensively assess complex cardiovascular hemodynamics in multiple regions of the body.The technique enables visualization of 3D blood flow patterns and retrospective quantification of blood flow parameters in a region of interest.Over the last few years,4D flow MRI has been increasingly performed in the abdominal region.By applying different acceleration techniques,taking 4D flow MRI measurements has dropped to a reasonable scanning time of 8 to 12 min.These new developments have encouraged a growing number of patient studies in the literature validating the technique’s potential for enhanced evaluation of blood flow parameters within the liver’s complex vascular system.The purpose of this review article is to broaden our understanding of 4D flow MRI for the assessment of liver hemodynamics by providing insights into acquisition,data analysis,visualization and quantification.Furthermore,in this article we highlight its development,focussing on the clinical application of the technique.展开更多
A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can gener...A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can generate one-, two-, three- and four-scroll chaotic attractors with appropriate choices of parameters. Interestingly, all the attractors are generated only by changing a single parameter. The dynamic analysis approach in the paper involves time series, phase portraits, Poincare maps, a bifurcation diagram, and Lyapunov exponents, to investigate some basic dynamical behaviours of the proposed four-dimensional system.展开更多
A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the meso...A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the mesoscale heavy rainfall forecast, a series of four-dimensional variational (4DVAR) data assimilation and model simulation experiments was conducted using nonhydrostatic mesoscale model MM5 and the MM5 4DVAR system. The effects of the intensive observations in the different areas on the heavy rainfall forecast were also investigated. The results showed that improvement of the forecast skill for mesoscale heavy rainfall intensity was possible from the assimilation of the IOP radiosonde observations. However, the impact of the IOP observations on the forecast of the rainfall pattern was not significant. Initial conditions obtained through the 4DVAR experiments with a 12-h assimilation window were capable of improving the 24-h forecast. The simulated results after the assimilation showed that it would be best to perform the intensive radiosonde observations in the upstream of the rainfall area and in the moisture passageway area at the same time. Initial conditions created by the 4DVAR led to the low-level moisture convergence over the rainfall area, enhanced frontogenesis and upward motion within the mei-yu front, and intensified middle- and high-level unstable stratification in front of the mei-yu front. Consequently, the heavy rainfall forecast was improved.展开更多
Aircraft ground movement plays a key role in improving airport efficiency,as it acts as a link to all other ground operations.Finding novel approaches to coordinate the movements of a fleet of aircraft at an airport i...Aircraft ground movement plays a key role in improving airport efficiency,as it acts as a link to all other ground operations.Finding novel approaches to coordinate the movements of a fleet of aircraft at an airport in order to improve system resilience to disruptions with increasing autonomy is at the center of many key studies for airport airside operations.Moreover,autonomous taxiing is envisioned as a key component in future digitalized airports.However,state-of-the-art routing and scheduling algorithms for airport ground movements do not consider high-fidelity aircraft models at both the proactive and reactive planning phases.The majority of such algorithms do not actively seek to optimize fuel efficiency and reduce harmful greenhouse gas emissions.This paper proposes a new approach for generating efficient four-dimensional trajectories(4DTs)on the basis of a high-fidelity aircraft model and gainscheduling control strategy.Working in conjunction with a routing and scheduling algorithm that determines the taxi route,waypoints,and time deadlines,the proposed approach generates fuel-efficient 4DTs in real time,while respecting operational constraints.The proposed approach can be used in two contexts:①as a reactive decision support tool to generate new trajectories that can resolve unprecedented events;and②as an autopilot system for both partial and fully autonomous taxiing.The proposed methodology is realistic and simple to implement.Moreover,simulation studies show that the proposed approach is capable of providing an up to 11%reduction in the fuel consumed during the taxiing of a large Boeing 747-100 jumbo jet.展开更多
In this paper, we propose a novel four-dimensional autonomous chaotic system. Of particular interest is that this novel system can generate one-, two, three- and four-wing chaotic attractors with the variation of a si...In this paper, we propose a novel four-dimensional autonomous chaotic system. Of particular interest is that this novel system can generate one-, two, three- and four-wing chaotic attractors with the variation of a single parameter, and the multi-wing type of the chaotic attractors can be displayed in all directions. The system is simple with a large positive Lyapunov exponent and can exhibit some interesting and complicated dynamical behaviours. Basic dynamical properties of the four-dimensional chaotic system, such as equilibrium points, the Poincare map, the bifurcation diagram and the Lyapunov exponents are investigated by using either theoretical analysis or numerical method. Finally, a circuit is designed for the implementation of the multi-wing chaotic attractors. The electronic workbench observations axe in good agreement with the numerical simulation results.展开更多
Consider a four-dimensional system having a two-dimensional invariant surface. By analyzing the solutions of bifurcation equations, this paper studied the bifurcation phenomena of a k multiple closed orbit in the inva...Consider a four-dimensional system having a two-dimensional invariant surface. By analyzing the solutions of bifurcation equations, this paper studied the bifurcation phenomena of a k multiple closed orbit in the invariant surface. Sufficient conditions for the existence of periodic orbits generated by the k multiple closed orbit were given.展开更多
Objective:To investigate the feasibility of a 4D-CT reconstruction method based on the similarity principle of spatial adjacent images and mutual information measure. Methods:A motor driven sinusoidal motion platform ...Objective:To investigate the feasibility of a 4D-CT reconstruction method based on the similarity principle of spatial adjacent images and mutual information measure. Methods:A motor driven sinusoidal motion platform made in house was used to create one-dimensional periodical motion that was along the longitudinal axis of the CT couch. The amplitude of sinusoidal motion was set to an amplitude of ±1 cm. The period of the motion was adjustable and set to 3.5 s. Phantom objects of two eggs were placed in a Styrofoam block, which in turn were placed on the motion platform. These objects were used to simulate volumes of interest undergoing ideal periodic motion. CT data of static phantom were acquired using a multi-slice general electric (GE) LightSpeed 16-slice CT scanner in an axial mode. And the CT data of periodical motion phantom were acquired in an axial and cine-mode scan. A software program was developed by using VC++ and VTK software tools to resort the CT data and reconstruct the 4D-CT. Then all of the CT data with same phase were sorted by the program into the same series based on the similarity principle of spatial adjacent images and mutual information measure among them, and 3D reconstruction of different phase CT data were completed by using the software. Results:All of the CT data were sorted accurately into different series based on the similarity principle of spatial adjacent images and mutual information measures among them. Compared with the unsorted CT data, the motion artifacts in the 3D reconstruction of sorted CT data were reduced significantly, and all of the sorted CT series result in a 4D-CT that reflected the characteristic of the periodical motion phantom. Conclusion:Time-resolved 4D-CT reconstruction can be implemented with any general multi-slice CT scanners based on the similarity principle of spatial adjacent images and mutual information measure.The process of the 4D-CT data acquisition and reconstruction were not restricted to the hardware or software of the CT scanner and has the feasibility ,which extensive applicability.展开更多
Cross-cultural management is often regarded as a discipline of international management focusing on cultural encounters between the organization and the nation-state, and providing tools to tackle cultural difl'erenc...Cross-cultural management is often regarded as a discipline of international management focusing on cultural encounters between the organization and the nation-state, and providing tools to tackle cultural difl'erences seen as sources of conflict, friction or misunderstanding. Based on Greet Hofstede' s Cultural Model, this paper attempts to shed some light on effective corporation management through cultural analysis of the difl'erences between China and western countries. The paper puts more emphasis on the impact of cultural compatibility on effective corporation man- agement through the case study of China, Japan, Germany and America. The author argues that managers and employ- ees involved in companies with diverse cultural backgrounds should be integrated and developed into a specific local context through interlocking their cultural identifications and the organizational practices.展开更多
Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread atte...Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread attention from the public because it caused catastrophic damage in China. Several numerical studies have shown that many forecast models, including Pennsylvania State University National Center for Atmospheric Research’s fifth-generation mesoscale model (MM5), failed to simulate the heavy precipitation over the Yangzi River valley. This study demonstrates that with the optimal initial conditions from the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) system, MM5 can successfully reproduce these observed rainfall amounts and can capture many important mesoscale features, including the southwestward shear line and the low-level jet stream. The study also indicates that the failure of previous forecasts can be mainly attributed to the lack of mesoscale details in the initial conditions of the models.展开更多
The eigenvalue space of the canonical four-dimensional Chua's circuit which can realize every eigenvalue for fourdimensional system is studied in this paper. First, the analytical relations between the circuit parame...The eigenvalue space of the canonical four-dimensional Chua's circuit which can realize every eigenvalue for fourdimensional system is studied in this paper. First, the analytical relations between the circuit parameters and the eigenvalues of the system are established, and therefore all the circuit parameters can be determined explicitly by any given set of eigenvalues. Then, the eigenvalue space of the circuit is investigated in two cases by the nonlinear elements used. According to the types of the eigenvalues, some novel hyperchaotic attractors are presented. Further, the dynamic behaviours of the circuit are studied by the bifurcation diagrams and the Lyapunov spectra of the eigenvalues.展开更多
Carbon, hydrogen, oxygen, nitrogen, sulfur, and their compounds are volatile components that dominate the thin and fragile atmosphere, hydrosphere, and biosphere on Earth’s habitable surface. However, the vast majori...Carbon, hydrogen, oxygen, nitrogen, sulfur, and their compounds are volatile components that dominate the thin and fragile atmosphere, hydrosphere, and biosphere on Earth’s habitable surface. However, the vast majority of these volatiles are hidden in the deep interior, where the high pressure–temperature conditions drastically and categorically alter the physics and chemistry of the volatiles. Like the bloodstream of an organism, the circulations and interactions of volatiles in the deep Earth modulate climate, resources, energy, natural hazards, and other factors that define the Earth as a unique living and changing planet.展开更多
The problem addressed is the exact determination of the operator norm and lower bound of four-dimensional generalized Hausdorff matrices on the double sequence spaces L_(p).A Hardy type formulae is found as an exact v...The problem addressed is the exact determination of the operator norm and lower bound of four-dimensional generalized Hausdorff matrices on the double sequence spaces L_(p).A Hardy type formulae is found as an exact value for their operator norm and a Copson type formulae is established as a lower estimate for their lower bound.Further,exact values are found for the operator norm and lower bound of the transpose of generalized Hausdorff matrices.展开更多
Forecasting convective storms using NWP models is an important goal and a highly active area of ongoing research. Skillful and reliable NWP of convective storms could allow for severe weather warnings with longer lead...Forecasting convective storms using NWP models is an important goal and a highly active area of ongoing research. Skillful and reliable NWP of convective storms could allow for severe weather warnings with longer lead times, as opera- tional forecasters begin to incorporate convective-scale fore- casts into severe weather forecast operations (Stensrud et al., 2009, 2013). This would then provide vulnerable individuals and industries with more time to seek shelter and/or mitigate the impact of severe weather hazards.展开更多
Objective: The purpose of this study was to evaluate the performance of the phase-binning algorithm and amplitude-binning algorithm for four-dimensional computed tomography(4DCT) reconstruction in lung cancer radiatio...Objective: The purpose of this study was to evaluate the performance of the phase-binning algorithm and amplitude-binning algorithm for four-dimensional computed tomography(4DCT) reconstruction in lung cancer radiation therapy. Methods: Quasar phantom data were used for evaluation. A phantom of known geometry was mounted on a four-dimensional(4D) motion platform programmed with twelve respiratory waves(twelve lung patients trajectories) and scanned with a Philips Brilliance Big bore 16-slice CT simulator. The 4DCT images were reconstructed using both phase- and amplitude-binning algorithms. Internal target volumes(ITVs) of the phase- and amplitude-binned image sets were compared by evaluation of shape and volume distortions. Results: The phantom experiments illustrated that, as expected, maximum inhalation occurred at the 0% amplitude and maximum exhalation occurred at the 50% amplitude of the amplitude-binned 4DCT image sets. The amplitude-binned algorithm rendered smaller ITV than the phase-binning algorithm. Conclusion: The amplitude-binning algorithm for 4DCT reconstruction may have a potential advantage in reducing the margin and protecting normal lung tissue from unnecessary irradiation.展开更多
基金the support from the National Natural Science Foundation of China(Grant Nos.12374202 and 12004001)Anhui Projects(Grant Nos.2022AH020009,S020218016,and Z010118169)Hefei City(Grant No.Z020132009)。
文摘Glasses are known to possess low-frequency excess modes beyond the Debye prediction.For decades,it has been assumed that evolution of low-frequency density of excess modes D(ω) with frequency ω follows a power-law scaling:D(ω)~ω~γ.However,it remains debated on the value of γ at low frequencies below the first phonon-like mode in finitesize glasses.Early simulation studies reported γ=4 at low frequencies in two-(2D),three-(3D),and four-dimensional(4D)glasses,whereas recent observations in 2D and 3D glasses suggested γ=3.5 in a lower-frequency regime.It is uncertain whether the low-frequency scaling of D(ω)~ω^(3.5) could be generalized to 4D glasses.Here,we conduct numerical simulation studies of excess modes at frequencies below the first phonon-like mode in 4D model glasses.It is found that the system size dependence of D(ω) below the first phonon-like mode varies with spatial dimensions:D(ω) increases in2D glasses but decreases in 3D and 4D glasses as the system size increases.Furthermore,we demonstrate that the ω^(3.5)scaling,rather than the ω~4 scaling,works in the lowest-frequency regime accessed in 4D glasses,regardless of interaction potentials and system sizes examined.Therefore,our findings in 4D glasses,combined with previous results in 2D and 3D glasses,suggest a common low-frequency scaling of D(ω)~ ω^3.5) below the first phonon-like mode across different spatial dimensions,which would inspire further theoretical studies.
文摘BACKGROUND Mitral valvuloplasty using artificial chordae tendineae represents an effective surgical approach for treating mitral regurgitation.Achieving precise measurements of artificial chordae tendineae length(CL)is an important factor in the procedure;however,no objective index currently exists to facilitate this measurement.Therefore,preoperative assessment of CL is critical for surgical planning and support.Four-dimensional x-ray micro-computed tomography(4D-CT)may be useful for accurate CL measurement considering that it allows for dynamic three-dimensional(3D)evaluation compared to that with transthoracic echocardiography,a conventional inspection method.AIM To investigate the behavior and length of mitral chordae tendineae during systole using 4D-CT.METHODS Eleven adults aged>70 years without mitral valve disease were evaluated.A 64-slice CT scanner was used to capture 20 phases in the cardiac cycle in electrocardiographic synchronization.The length of the primary chordae tendineae was measured from early systole to early diastole using the 3D image.The primary chordae tendineae originating from the anterior papillary muscle and attached to the A1-2 region and those from the posterior papillary muscle and attached to the A2-3 region were designated as cA and cP,respectively.The behavior and maximum lengths[cA(ma),cP(max)]were compared,and the correlation with body surface area(BSA)was evaluated.RESULTS In all cases,the mitral anterior leaflet chordae tendineae could be measured.In most cases,the cA and cP chordae tendineae could be measured visually.The mean cA(max)and cP(max)were 20.2 mm±1.95 mm and 23.5 mm±4.06 mm,respectively.cP(max)was significantly longer.The correlation coefficients(r)with BSA were 0.60 and 0.78 for cA(max)and cP(max),respectively.Both cA and cP exhibited constant variation in CL during systole,with a maximum 1.16-fold increase in cA and a 1.23-fold increase in cP from early to mid-systole.For cP,CL reached a plateau at 15%and remained elongated until end-systole,whereas for cA,after peaking at 15%,CL shortened slightly and then moved toward its peak again as end-systole approached.CONCLUSION The study suggests that 4D-CT is a valuable tool for accurate measurement of both the length and behavior of chordae tendineae within the anterior leaflet of the mitral valve.
文摘In the common theory of the Universe, the redshift of the light wavelength from distant stars indicates the speed of the star. In this study, the model of the Universe is the surface volume of the four-dimensional sphere, and the shape of the Universe results in the most of the redshift of light wavelength. Therefore, there is no dark energy accelerating the Universe. The surface of the four-dimensional sphere is a volume, and this volume is a good model for the Universe. The surface volume of the four-dimensional sphere has been explained by a model of four-dimensional cube, within which the forming of surface volume can be easily shown. The model of four-dimensional cube containing six side cubes is ingenious for explaining the structure of the four-dimensional Universe, but it is not enough because the four-dimensional cube has not six side cubes, but eight side cubes. Therefore, in this study a better method has been created to construct the four-dimensional cube. Our three-dimensional Universe is the surface of the four-dimensional sphere Universe. The volume of our three-dimensional Universe is finite, and beneath it is the infinite volume four-dimensional Super Universe. Two important basic formulae have been derived: The surface volume of the four-dimensional sphere is π<sup>3</sup>R<sup>3</sup> in which R is the radius of the sphere, and the fourth-power volume of the four-dimensional sphere is 1/4 π<sup>3</sup>R<sup>4</sup>. The volume of the Universe has been calculated π<sup>3</sup>R<sup>3</sup> = 62 × 10<sup>30</sup> ly<sup>3</sup>. Time as the fourth dimension of the space takes effect only near the speed of light, and therefore it has been ignored in this study.
基金sponsored by the U.S. National Science Foundation (Grant No.ATM0205599)the U.S. Offce of Navy Research under Grant N000140410471Dr. James A. Hansen was partially supported by US Offce of Naval Research (Grant No. N00014-06-1-0500)
文摘This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.
基金supported by the National Natural Science Foundation of China(Grant Nos.41490644,41475101 and 41421005)the CAS Strategic Priority Project(the Western Pacific Ocean System+2 种基金Project Nos.XDA11010105,XDA11020306 and XDA11010301)the NSFC-Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401)the NSFC Innovative Group Grant(Project No.41421005)
文摘A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.
文摘Since its introduction in the 1970’s,magnetic resonance imaging(MRI)has become a standard imaging modality.With its broad and standardized application,it is firmly established in the clinical routine and an essential element in cardiovascular and abdominal imaging.In addition to sonography and computer tomography,MRI is a valuable tool for diagnosing cardiovascular and abdominal diseases,for determining disease severity,and for assessing therapeutic success.MRI techniques have improved over the last few decades,revealing not just morphologic information,but functional information about perfusion,diffusion and hemodynamics as well.Four-dimensional(4D)flow MRI,a time-resolved phase contrast-MRI with three-dimensional(3D)anatomic coverage and velocity encoding along all three flow directions has been used to comprehensively assess complex cardiovascular hemodynamics in multiple regions of the body.The technique enables visualization of 3D blood flow patterns and retrospective quantification of blood flow parameters in a region of interest.Over the last few years,4D flow MRI has been increasingly performed in the abdominal region.By applying different acceleration techniques,taking 4D flow MRI measurements has dropped to a reasonable scanning time of 8 to 12 min.These new developments have encouraged a growing number of patient studies in the literature validating the technique’s potential for enhanced evaluation of blood flow parameters within the liver’s complex vascular system.The purpose of this review article is to broaden our understanding of 4D flow MRI for the assessment of liver hemodynamics by providing insights into acquisition,data analysis,visualization and quantification.Furthermore,in this article we highlight its development,focussing on the clinical application of the technique.
文摘A new four-dimensional quadratic smooth autonomous chaotic system is presented in this paper, which can exhibit periodic orbit and chaos under the conditions on the system parameters. Importantly, the system can generate one-, two-, three- and four-scroll chaotic attractors with appropriate choices of parameters. Interestingly, all the attractors are generated only by changing a single parameter. The dynamic analysis approach in the paper involves time series, phase portraits, Poincare maps, a bifurcation diagram, and Lyapunov exponents, to investigate some basic dynamical behaviours of the proposed four-dimensional system.
文摘A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the mesoscale heavy rainfall forecast, a series of four-dimensional variational (4DVAR) data assimilation and model simulation experiments was conducted using nonhydrostatic mesoscale model MM5 and the MM5 4DVAR system. The effects of the intensive observations in the different areas on the heavy rainfall forecast were also investigated. The results showed that improvement of the forecast skill for mesoscale heavy rainfall intensity was possible from the assimilation of the IOP radiosonde observations. However, the impact of the IOP observations on the forecast of the rainfall pattern was not significant. Initial conditions obtained through the 4DVAR experiments with a 12-h assimilation window were capable of improving the 24-h forecast. The simulated results after the assimilation showed that it would be best to perform the intensive radiosonde observations in the upstream of the rainfall area and in the moisture passageway area at the same time. Initial conditions created by the 4DVAR led to the low-level moisture convergence over the rainfall area, enhanced frontogenesis and upward motion within the mei-yu front, and intensified middle- and high-level unstable stratification in front of the mei-yu front. Consequently, the heavy rainfall forecast was improved.
基金This work was funded by the UK Engineering and Physical Sciences Research Council(EP/N029496/1,EP/N029496/2,EP/N029356/1,EP/N029577/1,and EP/N029577/2).
文摘Aircraft ground movement plays a key role in improving airport efficiency,as it acts as a link to all other ground operations.Finding novel approaches to coordinate the movements of a fleet of aircraft at an airport in order to improve system resilience to disruptions with increasing autonomy is at the center of many key studies for airport airside operations.Moreover,autonomous taxiing is envisioned as a key component in future digitalized airports.However,state-of-the-art routing and scheduling algorithms for airport ground movements do not consider high-fidelity aircraft models at both the proactive and reactive planning phases.The majority of such algorithms do not actively seek to optimize fuel efficiency and reduce harmful greenhouse gas emissions.This paper proposes a new approach for generating efficient four-dimensional trajectories(4DTs)on the basis of a high-fidelity aircraft model and gainscheduling control strategy.Working in conjunction with a routing and scheduling algorithm that determines the taxi route,waypoints,and time deadlines,the proposed approach generates fuel-efficient 4DTs in real time,while respecting operational constraints.The proposed approach can be used in two contexts:①as a reactive decision support tool to generate new trajectories that can resolve unprecedented events;and②as an autopilot system for both partial and fully autonomous taxiing.The proposed methodology is realistic and simple to implement.Moreover,simulation studies show that the proposed approach is capable of providing an up to 11%reduction in the fuel consumed during the taxiing of a large Boeing 747-100 jumbo jet.
文摘In this paper, we propose a novel four-dimensional autonomous chaotic system. Of particular interest is that this novel system can generate one-, two, three- and four-wing chaotic attractors with the variation of a single parameter, and the multi-wing type of the chaotic attractors can be displayed in all directions. The system is simple with a large positive Lyapunov exponent and can exhibit some interesting and complicated dynamical behaviours. Basic dynamical properties of the four-dimensional chaotic system, such as equilibrium points, the Poincare map, the bifurcation diagram and the Lyapunov exponents are investigated by using either theoretical analysis or numerical method. Finally, a circuit is designed for the implementation of the multi-wing chaotic attractors. The electronic workbench observations axe in good agreement with the numerical simulation results.
文摘Consider a four-dimensional system having a two-dimensional invariant surface. By analyzing the solutions of bifurcation equations, this paper studied the bifurcation phenomena of a k multiple closed orbit in the invariant surface. Sufficient conditions for the existence of periodic orbits generated by the k multiple closed orbit were given.
基金Guangzhou Municipal Medicine &Health ProgramGrant number:2006-YB-177+1 种基金Guangdong Province Medicine Scientific Research ProgramGrant number:A2007290
文摘Objective:To investigate the feasibility of a 4D-CT reconstruction method based on the similarity principle of spatial adjacent images and mutual information measure. Methods:A motor driven sinusoidal motion platform made in house was used to create one-dimensional periodical motion that was along the longitudinal axis of the CT couch. The amplitude of sinusoidal motion was set to an amplitude of ±1 cm. The period of the motion was adjustable and set to 3.5 s. Phantom objects of two eggs were placed in a Styrofoam block, which in turn were placed on the motion platform. These objects were used to simulate volumes of interest undergoing ideal periodic motion. CT data of static phantom were acquired using a multi-slice general electric (GE) LightSpeed 16-slice CT scanner in an axial mode. And the CT data of periodical motion phantom were acquired in an axial and cine-mode scan. A software program was developed by using VC++ and VTK software tools to resort the CT data and reconstruct the 4D-CT. Then all of the CT data with same phase were sorted by the program into the same series based on the similarity principle of spatial adjacent images and mutual information measure among them, and 3D reconstruction of different phase CT data were completed by using the software. Results:All of the CT data were sorted accurately into different series based on the similarity principle of spatial adjacent images and mutual information measures among them. Compared with the unsorted CT data, the motion artifacts in the 3D reconstruction of sorted CT data were reduced significantly, and all of the sorted CT series result in a 4D-CT that reflected the characteristic of the periodical motion phantom. Conclusion:Time-resolved 4D-CT reconstruction can be implemented with any general multi-slice CT scanners based on the similarity principle of spatial adjacent images and mutual information measure.The process of the 4D-CT data acquisition and reconstruction were not restricted to the hardware or software of the CT scanner and has the feasibility ,which extensive applicability.
文摘Cross-cultural management is often regarded as a discipline of international management focusing on cultural encounters between the organization and the nation-state, and providing tools to tackle cultural difl'erences seen as sources of conflict, friction or misunderstanding. Based on Greet Hofstede' s Cultural Model, this paper attempts to shed some light on effective corporation management through cultural analysis of the difl'erences between China and western countries. The paper puts more emphasis on the impact of cultural compatibility on effective corporation man- agement through the case study of China, Japan, Germany and America. The author argues that managers and employ- ees involved in companies with diverse cultural backgrounds should be integrated and developed into a specific local context through interlocking their cultural identifications and the organizational practices.
基金the National Basic Research Program (973 Program) (No.2010CB 951604)the China Meteorological Administration for the R&D Special Fund for Public Welfare Industry (meteorology) [Grant No. GYHY(QX)200906009]+1 种基金the National High Technology Research and Development Program of China (863 Program) (No. 2010AA012304)the LASG free exploration fund
文摘Accurate forecast of rainstorms associated with the mei-yu front has been an important issue for the Chinese economy and society. In July 1998 a heavy rainstorm hit the Yangzi River valley and received widespread attention from the public because it caused catastrophic damage in China. Several numerical studies have shown that many forecast models, including Pennsylvania State University National Center for Atmospheric Research’s fifth-generation mesoscale model (MM5), failed to simulate the heavy precipitation over the Yangzi River valley. This study demonstrates that with the optimal initial conditions from the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) system, MM5 can successfully reproduce these observed rainfall amounts and can capture many important mesoscale features, including the southwestward shear line and the low-level jet stream. The study also indicates that the failure of previous forecasts can be mainly attributed to the lack of mesoscale details in the initial conditions of the models.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50877007)
文摘The eigenvalue space of the canonical four-dimensional Chua's circuit which can realize every eigenvalue for fourdimensional system is studied in this paper. First, the analytical relations between the circuit parameters and the eigenvalues of the system are established, and therefore all the circuit parameters can be determined explicitly by any given set of eigenvalues. Then, the eigenvalue space of the circuit is investigated in two cases by the nonlinear elements used. According to the types of the eigenvalues, some novel hyperchaotic attractors are presented. Further, the dynamic behaviours of the circuit are studied by the bifurcation diagrams and the Lyapunov spectra of the eigenvalues.
基金Alfred P. Sloan Foundation (G-2016-7065) to the DCO Secretariatthe National Natural Science Foundation of China (U1530402) to HPSTAR.
文摘Carbon, hydrogen, oxygen, nitrogen, sulfur, and their compounds are volatile components that dominate the thin and fragile atmosphere, hydrosphere, and biosphere on Earth’s habitable surface. However, the vast majority of these volatiles are hidden in the deep interior, where the high pressure–temperature conditions drastically and categorically alter the physics and chemistry of the volatiles. Like the bloodstream of an organism, the circulations and interactions of volatiles in the deep Earth modulate climate, resources, energy, natural hazards, and other factors that define the Earth as a unique living and changing planet.
文摘The problem addressed is the exact determination of the operator norm and lower bound of four-dimensional generalized Hausdorff matrices on the double sequence spaces L_(p).A Hardy type formulae is found as an exact value for their operator norm and a Copson type formulae is established as a lower estimate for their lower bound.Further,exact values are found for the operator norm and lower bound of the transpose of generalized Hausdorff matrices.
文摘Forecasting convective storms using NWP models is an important goal and a highly active area of ongoing research. Skillful and reliable NWP of convective storms could allow for severe weather warnings with longer lead times, as opera- tional forecasters begin to incorporate convective-scale fore- casts into severe weather forecast operations (Stensrud et al., 2009, 2013). This would then provide vulnerable individuals and industries with more time to seek shelter and/or mitigate the impact of severe weather hazards.
文摘Objective: The purpose of this study was to evaluate the performance of the phase-binning algorithm and amplitude-binning algorithm for four-dimensional computed tomography(4DCT) reconstruction in lung cancer radiation therapy. Methods: Quasar phantom data were used for evaluation. A phantom of known geometry was mounted on a four-dimensional(4D) motion platform programmed with twelve respiratory waves(twelve lung patients trajectories) and scanned with a Philips Brilliance Big bore 16-slice CT simulator. The 4DCT images were reconstructed using both phase- and amplitude-binning algorithms. Internal target volumes(ITVs) of the phase- and amplitude-binned image sets were compared by evaluation of shape and volume distortions. Results: The phantom experiments illustrated that, as expected, maximum inhalation occurred at the 0% amplitude and maximum exhalation occurred at the 50% amplitude of the amplitude-binned 4DCT image sets. The amplitude-binned algorithm rendered smaller ITV than the phase-binning algorithm. Conclusion: The amplitude-binning algorithm for 4DCT reconstruction may have a potential advantage in reducing the margin and protecting normal lung tissue from unnecessary irradiation.