期刊文献+
共找到791篇文章
< 1 2 40 >
每页显示 20 50 100
Extended Evolutionary Fast Learn-to-Walk Approach for Four-Legged Robots 被引量:2
1
作者 Muh. Anshar Mary-Anne Williams 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第4期255-263,共9页
Robot locomotion is an active research area. In this paper we focus on the locomotion of quadruped robots. An effective walking gait of quadruped robots is mainly concerned with two key aspects, namely speed and stabi... Robot locomotion is an active research area. In this paper we focus on the locomotion of quadruped robots. An effective walking gait of quadruped robots is mainly concerned with two key aspects, namely speed and stability. The large search space of potential parameter settings for leg joints means that hand tuning is not feasible in general. As a result walking parameters are typically determined using machine learning techniques. A major shortcoming of using machine learning techniques is the significant wear and tear of robots since many parameter combinations need to be evaluated before an optimal solution is found. This paper proposes a direct walking gait learning approach, which is specifically designed to reduce wear and tear of robot motors, joints and other hardware. In essence we provide an effective learning mechanism that leads to a solution in a faster convergence time than previous algorithms. The results demonstrate that the new learning algorithm obtains a faster convergence to the best solutions in a short run. This approach is significant in obtaining faster walking gaits which will be useful for a wide range of applications where speed and stability are important. Future work will extend our methods so that the faster convergence algorithm can be applied to a two legged humanoid and lead to less wear and tear whilst still developing a fast and stable gait. 展开更多
关键词 legged-robots locomotion learning GENETIC CONVERGENCE walking gaits
下载PDF
Kinematics and Dynamics Analysis of a Quadruped Walking Robot with Parallel Leg Mechanism 被引量:13
2
作者 WANG Hongbo SANG Lingfeng +2 位作者 HU Xing ZHANG Dianfan YU Hongnian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期881-891,共11页
It is desired to require a walking robot for the elderly and the disabled to have large capacity,high stiffness,stability,etc.However,the existing walking robots cannot achieve these requirements because of the weight... It is desired to require a walking robot for the elderly and the disabled to have large capacity,high stiffness,stability,etc.However,the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function.Therefore,Improvement of enhancing capacity and functions of the walking robot is an important research issue.According to walking requirements and combining modularization and reconfigurable ideas,a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed.The proposed robot can be used for both a biped and a quadruped walking robot.The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized.The results show that performance of the walking robot is optimal when the circumradius R,r of the upper and lower platform of leg mechanism are 161.7 mm,57.7 mm,respectively.Based on the optimal results,the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory,and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed,which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process.Besides laying a theoretical foundation for development of the prototype,the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism. 展开更多
关键词 walking robot parallel leg mechanism KINEMATICS DYNAMICS over-determinate inputs
下载PDF
Motion Error Compensation of Multi-legged Walking Robots 被引量:6
3
作者 WANG Liangwen CHEN Xuedong +3 位作者 WANG Xinjie TANG Weigang SUN Yi PAN Chunmei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期639-646,共8页
Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation... Existing errors in the structure and kinematic parameters of multi-legged walking robots,the motion trajectory of robot will diverge from the ideal sports requirements in movement.Since the existing error compensation is usually used for control compensation of manipulator arm,the error compensation of multi-legged robots has seldom been explored.In order to reduce the kinematic error of robots,a motion error compensation method based on the feedforward for multi-legged mobile robots is proposed to improve motion precision of a mobile robot.The locus error of a robot body is measured,when robot moves along a given track.Error of driven joint variables is obtained by error calculation model in terms of the locus error of robot body.Error value is used to compensate driven joint variables and modify control model of robot,which can drive the robots following control model modified.The model of the relation between robot's locus errors and kinematic variables errors is set up to achieve the kinematic error compensation.On the basis of the inverse kinematics of a multi-legged walking robot,the relation between error of the motion trajectory and driven joint variables of robots is discussed.Moreover,the equation set is obtained,which expresses relation among error of driven joint variables,structure parameters and error of robot's locus.Take MiniQuad as an example,when the robot MiniQuad moves following beeline tread,motion error compensation is studied.The actual locus errors of the robot body are measured before and after compensation in the test.According to the test,variations of the actual coordinate value of the robot centroid in x-direction and z-direction are reduced more than one time.The kinematic errors of robot body are reduced effectively by the use of the motion error compensation method based on the feedforward. 展开更多
关键词 multi-legged walking robot error model motion error compensation kinematic analysis motion precision
下载PDF
Adjustable Mechanism for Walking Robots with Minimum Number of Actuators 被引量:4
4
作者 GUHA Anirban AMARNATH C 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期760-766,共7页
Recent literature on walking robots deals predominantly with multi-degrees-of-freedom leg mechanisms and machines capable of adopting several gaits.This paper explores the other end of the spectrum suggesting mechanis... Recent literature on walking robots deals predominantly with multi-degrees-of-freedom leg mechanisms and machines capable of adopting several gaits.This paper explores the other end of the spectrum suggesting mechanisms derived from a four bar coupler curve for a one degree of freedom walking robot.Simulation of the walk indicates that body of the robot is able to move with low variation in velocity.The best strategy for changing the gait to enable the robot to walk over obstacles and the effect of change in length of different links are explored to open up the possibility of a two degree of freedom walking robot with the capability of changing its gait,suitable as a low cost unit for several applications.Such rugged units would permit the use of an IC engine as the primary source of power and could be of utility in installations where electronics may not be functional.In simple walking machines the foot of a leg is usually required to trace a D shaped curve with respect to the chassis.In this paper we begin with a Hoecken mechanism capable of tracing such a curve.The foot is required to move parallel to itself and the same could be achieved using a six or eight link mechanism.A few such devices have been synthesized in this paper and their motion properties compared.The study also covers the possibility of providing adjustments to vary the step length and height of the foot's movement. 展开更多
关键词 walking robot degree of freedom coupler curve GAIT
下载PDF
A novel explosion-proof walking system: Twin dual-motor drive tracked units for coal mine rescue robots 被引量:2
5
作者 李雨潭 朱华 +1 位作者 李猛钢 李鹏 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2570-2577,共8页
A new explosion-proof walking system was designed for the coal mine rescue robot(CMRR) by optimizing the mechanical structure and control algorithm. The mechanical structure innovation lies mainly in the dual-motor dr... A new explosion-proof walking system was designed for the coal mine rescue robot(CMRR) by optimizing the mechanical structure and control algorithm. The mechanical structure innovation lies mainly in the dual-motor drive tracked unit used, which showed high dynamic performance compared with the conventional tracked unit. The control algorithm, developed based on decision trees and neural networking, facilitates autonomous switching between "Velocity-driven Mode" and "Torquedriven Mode". To verify the feasibility and effectiveness of the control strategy, we built a self-designed test platform and used it to debug the control program; we then made a robot prototype and conducted further experiments on single-step, ramp, and rubble terrains. The results show that the proposed walking system has excellent dynamic performance and the control strategy is very efficient, suggesting that a robot with this type of explosion-proof walking system can be successfully applied in Chinese coal mines. 展开更多
关键词 coal mine rescue robot tracked walking system EXPLOSION-PROOF control strategy
下载PDF
Stability and control of dynamic walking for a five-link planar biped robot with feet 被引量:2
6
作者 Chenglong FU Ken CHEN +1 位作者 Jing XIONG Leon XU 《控制理论与应用(英文版)》 EI 2007年第2期113-120,共8页
During dynamic walking of biped robots, the underactuated rotating degree of freedom (DOF) emerges between the support foot and the ground, which makes the biped model hybrid and dimension-variant. This paper addres... During dynamic walking of biped robots, the underactuated rotating degree of freedom (DOF) emerges between the support foot and the ground, which makes the biped model hybrid and dimension-variant. This paper addresses the asymptotic orbit stability for dimension-variant hybrid systems (DVHS). Based on the generalized Poincare map, the stability criterion for DVHS is also presented, and the result is then used to study dynamic walking for a five-link planar biped robot with feet. Time-invariant gait planning and nonlinear control strategy for dynamic walking with fiat feet is also introduced. Simulation results indicate that an asymptotically stable limit cycle of dynamic walking is achieved by the proposed method. 展开更多
关键词 Biped robot Dynamic walking Orbit stability Dimension-variant hybrid systems Nonlinear control
下载PDF
STUDIES ON MECHANICS PROBLEM OF DYNAMIC WALKING OF ANTHROPOMORPHIC BIPED ROBOTS 被引量:1
7
作者 Tan Guanzheng Yang Hongzhi(Robottes Research Centre, Central South University of Technology, Changsha, 410083, China) 《Journal of Central South University》 SCIE EI CAS 1995年第2期59-65,共7页
This paper deals with the mechanics problem of dynamic walking of anthropomorphic biped robots. Through analysing the mechanics system of this kind of robots in detail, the motion constraint equations are established,... This paper deals with the mechanics problem of dynamic walking of anthropomorphic biped robots. Through analysing the mechanics system of this kind of robots in detail, the motion constraint equations are established, three mechanics laws describing the r 展开更多
关键词 anthropomorphic BIPED robot DYNAMIC walking MECHANICS system MECHANICS LAWS measuring and computing
下载PDF
DARPA Robotics Grand Challenge Participation and Ski-Type Gait for Rough-Terrain Walking 被引量:2
8
作者 Hongfei Wang Shimeng Li Yuan F.Zheng 《Engineering》 SCIE EI 2015年第1期36-45,共10页
In this paper, we briefly introduce the history of the Defense Advanced Research Projects Agency(DARPA) Grand Challenge programs with particular focus on the 2012 Robotics Challenge. As members of team DRC-HUBO, we pr... In this paper, we briefly introduce the history of the Defense Advanced Research Projects Agency(DARPA) Grand Challenge programs with particular focus on the 2012 Robotics Challenge. As members of team DRC-HUBO, we propose different approaches for the Rough-Terrain task, such as enlarged foot pedals and a transformation into quadruped walking. We also introduce a new gait for humanoid robot locomotion to improve stability performance, called the Ski-Type gait. We analyze the stability performance of this gait and use the stability margin to choose between two candidate step sequences, Crawl-1 and Crawl-2. Next, we perform a force/torque analysis for the redundant closedchain system in the Ski-Type gait, and determine the joint torques by minimizing the total energy consumption. Based on the stability and force/torque analysis, we design a cane length to support a feasible and stable Crawl-2 gait on the HUBO2 humanoid robot platform. Finally, we compare our experimental results with biped walking to validate the SkiType gait. We also present our team performance in the trials of the Robotics Challenge. 展开更多
关键词 humanoid robot DARPA robotics challenge(DRC) rough-terrain walking Ski-Type gait
下载PDF
Stable walking of quadruped robot on unknown rough terrain 被引量:1
9
作者 何玉东 王军政 +1 位作者 柯贤锋 汪首坤 《Journal of Beijing Institute of Technology》 EI CAS 2016年第4期463-472,共10页
Quadruped robot is considered to be the most practical locomotion machine to negotiate uneven terrain, and shows superb stability during static walking. To improve the ability to go over rough terrain, this paper is f... Quadruped robot is considered to be the most practical locomotion machine to negotiate uneven terrain, and shows superb stability during static walking. To improve the ability to go over rough terrain, this paper is focused on the stable walking and balance control of quadruped robots. 24 kinds of walking gaits are analyzed in order to derive the most stable and smoothest walking gait. Considering the inefficiency to model a terrain by its specified appearance, a uniform terrain model is established and by means of kinematic analysis, a method to adjust the body posture and center of gravity (COG) height is presented. Simulations demonstrate the effectiveness of the proposed meth- od and the improvement of the adaptation of quadruped robots on rough terrain. 展开更多
关键词 quadruped robot unknown rough terrain walking gait body posture body center ofgravity (COG)
下载PDF
Influence of Slope Angle on the Walking of Passive Dynamic Biped Robot 被引量:1
10
作者 Nita H. Shah Mahesh A. Yeolekar 《Applied Mathematics》 2015年第3期456-465,共10页
In this paper, we modeled a simple planer passive dynamic biped robot without knee with point feet. This model has a stable, efficient and natural periodic gait which depends on the values of parameters like slope ang... In this paper, we modeled a simple planer passive dynamic biped robot without knee with point feet. This model has a stable, efficient and natural periodic gait which depends on the values of parameters like slope angle of inclined ramp, mass ratio and length ratio. The described model actually is an impulse differential equation. Its corresponding poincare map is discrete case. With the analysis of the bifurcation properties of poincare map, we can effectively understand some feature of impulse model. The ideas and methods to cope with this impulse model are common. But, the process of analysis is rigorous. Numerical simulations are reliable. 展开更多
关键词 BIPED robot LIMIT Cycle walking Passive Dynamic walking POINCARE Map ORBITAL Stability BIFURCATION
下载PDF
Ground substrates classification and adaptive walking through interaction dynamics for legged robots 被引量:1
11
作者 邵雪松 杨一平 王伟 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第3期100-108,共9页
Adaptive locomotion in different types of surfaces is of critical importance for legged robots.The knowledge of various ground substrates,especially some geological properties,plays an essential role in ensuring the l... Adaptive locomotion in different types of surfaces is of critical importance for legged robots.The knowledge of various ground substrates,especially some geological properties,plays an essential role in ensuring the legged robots'safety.In this paper,the interaction between the robots and the environments is investigated through interaction dynamics with the closed-loop system model,the compliant contact model,and the friction model,which unveil the influence of environment's geological characteristics for legged robots'locomotion.The proposed method to classify substrates is based on the interaction dynamics and the sensory-motor coordination.The foot contact forces,joint position errors,and joint motor currents,which reflect body dynamics,are measured as the sensing variables.We train and classify the features extracted from the raw data with a multilevel weighted k-Nearest Neighbor(kNN) algorithm.According to the interaction dynamics,the strategy of adaptive walking is developed by adjusting the touchdown angles and foot trajectories while lifting up and dropping down the foot.Experiments are conducted on five different substrates with quadruped robot FROG-I.The comparison with other classification methods and adaptive walking between different substrates demonstrate the effectiveness of our approach. 展开更多
关键词 legged robot ground substrates classification adaptive walking interaction dynamics
下载PDF
Simulation Platform of Underwater Quadruped Walking Robot Based on MotionGenesis Kane 5.3 and Central Pattern Generator 被引量:1
12
作者 Ke Yang Xu-Yang Wang +1 位作者 Tong Ge Chao Wu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第3期24-29,共6页
It will still in lack of a simulation platform used to learn the walking of underwater quadruped walking robot. In order to alleviate this shortage,a simulation platform for the underwater quadruped walking robot base... It will still in lack of a simulation platform used to learn the walking of underwater quadruped walking robot. In order to alleviate this shortage,a simulation platform for the underwater quadruped walking robot based on Kane dynamic model and CPG-based controller is constructed. The Kane dynamic model of the underwater quadruped walking robot is processed with a commercial package MotionGenesis Kane 5. 3. The forces between the feet and ground are represented as a spring and damper. The relation between coefficients of spring and damper and stability of underwater quadruped walking robot in the stationary state is studied. The CPG-based controller consisted of Central Pattern Generator( CPG) and PD controller is presented,which can be used to control walking of the underwater quadruped walking robot. The relation between CPG parameters and walking speed of underwater quadruped walking robot is investigated. The relation between coefficients of spring and damper and walking speed of underwater quadruped walking robot is studied. The results show that the simulation platform can imitate the stable walking of the underwater quadruped walking robot. 展开更多
关键词 underwater quadruped walking robot MotionGenesis Kane 5.3 CPG
下载PDF
High-Speed,High-Power Motor Design for a Four-Legged Robot Actuator Optimized using the Weighted Sum and Response Surface Methods 被引量:1
13
作者 Tae-Woo Lee Do-Kwan Hong Tae-Uk Jung 《CES Transactions on Electrical Machines and Systems》 CSCD 2021年第3期224-231,共8页
In this paper,a design is presented for a high-speed,high-power motor for a four-legged robot actuator that was optimized using the weighted sum method(WSM)based on the Taguchi method,and the response surface method(R... In this paper,a design is presented for a high-speed,high-power motor for a four-legged robot actuator that was optimized using the weighted sum method(WSM)based on the Taguchi method,and the response surface method(RSM).First,output torque,torque constant,torque ripple,and efficiency were selected as objective functions for the optimized design.The sampling method was implemented to use a mixed orthogonal array and the single response characteristics of each objective function were compared using the Taguchi method.Moreover,to consider the multi-response characteristic of the objective functions,WSM was applied.Second,the 2D finite element analysis result of the RSM was compared with that using the WSM.Finally,an experiment was carried out on the manufactured motor and the optimized model is presented here. 展开更多
关键词 four-legged robot Multiphysics analysis Optimized design Surface mounted permanent magnet synchronous motor
下载PDF
Solving position-posture deviation problem of multi-legged walking robots with semi-round rigid feet by closed-loop control 被引量:1
14
作者 陈刚 金波 陈鹰 《Journal of Central South University》 SCIE EI CAS 2014年第11期4133-4141,共9页
The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The positi... The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The position-posture deviation problem may harm to the stability and the harmony of the robot, or even makes the robot tip over and fail to walk forward. Focused on the position-posture deviation problem of multi-legged walking robots with semi-round rigid feet, a new method of position-posture closed-loop control is proposed to solve the position-posture deviation problem caused by semi-round rigid feet, based on the inverse velocity kinematics of the multi-legged walking robots. The position-posture closed-loop control is divided into two parts: the position closed-loop control and the posture closed-loop control. Thus, the position-posture control for the robot which is a tight coupling and nonlinear system is decoupled. Co-simulations of position-posture open-loop control and position-posture closed-loop control by MATLAB and ADAMS are implemented, respectively. The co-simulation results verify that the position-posture closed-loop control performs well in solving the position-posture deviation problem caused by semi-round rigid feet. 展开更多
关键词 position-posture deviation semi-round rigid feet closed-loop control multi-legged walking robots
下载PDF
Effectiveness of the A3 robot on lower extremity motor function in stroke patients:A prospective,randomized controlled trial
15
作者 Lin-Jian Zhang Xin Wen +4 位作者 Yang Peng Wei Hu Hui Liao Zi-Cai Liu Hui-Yu Liu 《World Journal of Clinical Cases》 SCIE 2024年第24期5523-5533,共11页
BACKGROUND The results of existing lower extremity robotics studies are conflicting,and few relevant clinical trials have examined short-term efficacy.In addition,most of the outcome indicators in existing studies are... BACKGROUND The results of existing lower extremity robotics studies are conflicting,and few relevant clinical trials have examined short-term efficacy.In addition,most of the outcome indicators in existing studies are scales,which are not objective enough.We used the combination of objective instrument measurement and scale to explore the short-term efficacy of the lower limb A3 robot,to provide a clinical reference.AIM To investigate the improvement of lower limb walking ability and balance in stroke treated by A3 lower limb robot.METHODS Sixty stroke patients were recruited prospectively in a hospital and randomized into the A3 group and the control group.They received 30 min of A3 robotics training and 30 min of floor walking training in addition to 30 min of regular rehabilitation training.The training was performed five times a week,once a day,for 2 wk.The t-test or non-parametric test was used to compare the threedimensional gait parameters and balance between the two groups before and after treatment.RESULTS The scores of basic activities of daily living,Stroke-Specific Quality of Life Scale,FM balance meter,Fugl-Meyer Assessment scores,Rivermead Mobility Index,Stride speed,Stride length,and Time Up and Go test in the two groups were significantly better than before treatment(19.29±12.15 vs 3.52±4.34;22.57±17.99 vs 4.07±2.51;1.21±0.83 vs 0.18±0.40;3.50±3.80 vs 0.96±2.08;2.07±1.21 vs 0.41±0.57;0.89±0.63 vs 0.11±0.32;12.38±9.00 vs 2.80±3.43;18.84±11.24 vs 3.80±10.83;45.12±69.41 vs 8.41±10.20;29.45±16.62 vs 8.68±10.74;P<0.05).All outcome indicators were significantly better in the A3 group than in the control group,except the area of the balance parameter.CONCLUSION For the short-term treatment of patients with subacute stroke,the addition of A3 robotic walking training to conventional physiotherapy appears to be more effective than the addition of ground-based walking training. 展开更多
关键词 STROKE robotics GAIT robot-assisted gait training Neurological rehabilitation walking training
下载PDF
Research of 6-DOF Serial-Parallel Mechanism Platform for Stability Training of Legged-Walking Robot 被引量:1
16
作者 Wei-Guo Wu Wen-Qian Du 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第2期75-82,共8页
The concept of legged-robot stability training with a training platform is proposed and a serial-parallel mechanism platform with 6 degrees of freedom is designed for this target. The designed platform is composed of ... The concept of legged-robot stability training with a training platform is proposed and a serial-parallel mechanism platform with 6 degrees of freedom is designed for this target. The designed platform is composed of 4-DOF parallel mechanism with spherical joints and prismatic pairs,and 2-DOF serial mechanism with prismatic pairs. With this design,the platform has advantages of low platform countertop,big workspace,high carrying capacity and high stiffness. On the basis of DOF analysis and computation of space mechanism,weight supporting auxiliary mechanism and raceways-balls supporting mechanism are designed,so as to improve the stiffness of designed large platform and payload capacity of servo motors. And then the whole structure design work of the platform is done. Meanwhile,this paper derives the analytical solutions of forward kinematics, inverse kinematics and inverse dynamics. The error analysis model of position and orientation is established. And then the simulation is done in ADAMS to ensure the correctness and feasibility of this design. 展开更多
关键词 6-DOF serial-parallel mechanism forward kinematics stability training legged-walking robot
下载PDF
Walking Stability Control Method for Biped Robot on Uneven Ground Based on Deep Q-Network
17
作者 Baoling Han Yuting Zhao Qingsheng Luo 《Journal of Beijing Institute of Technology》 EI CAS 2019年第3期598-605,共8页
A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture ... A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture adjustment. A robot is taken as an agent and trained to walk steadily on an uneven surface with obstacles, using a simple reward function based on forward progress. The reward-punishment (RP) mechanism of the DQN algorithm is established after obtaining the offline gait which was generated in advance foot trajectory planning. Instead of implementing a complex dynamic model, the proposed method enables the biped robot to learn to adjust its posture on the uneven ground and ensures walking stability. The performance and effectiveness of the proposed algorithm was validated in the V-REP simulation environment. The results demonstrate that the biped robot's lateral tile angle is less than 3° after implementing the proposed method and the walking stability is obviously improved. 展开更多
关键词 DEEP Q-network (DQN) BIPED robot uneven ground walking STABILITY gait control
下载PDF
Geometric design of crab-like climbing and walking robots
18
作者 David Howard 《Journal of Bionic Engineering》 SCIE EI CSCD 2004年第4期231-240,共10页
This paper considers the geometric design of crab-like walkers and climbers, without decoupling leg design from overall machine design. Crab-like machines represent an important sub-class of multi-legged robots, bein... This paper considers the geometric design of crab-like walkers and climbers, without decoupling leg design from overall machine design. Crab-like machines represent an important sub-class of multi-legged robots, being particularly well suited to crossing difficult terrains. Firstly, the kinematic configurations and constraints are described, which determine the machine’s kinematic characteristics. The influence of the design parameters on the kinematic workspace is discussed. Finally, a two stage design methodology is presented, comprising kinematic design and design optimisation, the latter being based on the use of design maps rather than numerical optimisation. The performance measures considered during design optimisation include kinematic, static and quasi-static measures. 展开更多
关键词 walking machine robot KINEMATICS optimal design 1
下载PDF
Overall design of the multifunctional walking rehabilitation robot 被引量:1
19
作者 Wu Zhuang Fan Jie +3 位作者 Zhao Jiantao Zhang Chao Pan Qiao Zhang Li 《Computer Aided Drafting,Design and Manufacturing》 2016年第3期17-20,共4页
In this paper, it introduced the mechanical structure design of the multifunctional walking rehabilitation robot, We used the SolidWorks to design and assemble the rehabilitation robot, and optimized the rehabilitatio... In this paper, it introduced the mechanical structure design of the multifunctional walking rehabilitation robot, We used the SolidWorks to design and assemble the rehabilitation robot, and optimized the rehabilitation robot based on ergonomics. The result shows that the multifunctional walking rehabilitation robot has the characteristics of complete functions, convenient operation, compact structure and so on. It can meet the requirements of medical care equipment, and effectively complete the nursing work of patients. 展开更多
关键词 multifunctional walking rehabilitation robot finite element analysis SolidWorks modeling
下载PDF
A New Method of Desired Gait Synthesis for Biped Walking Robot Based on Ground Reaction Force
20
作者 张永学 《High Technology Letters》 EI CAS 2000年第4期33-38,共6页
A new method of desired gait synthesis for biped walking robot based on the ground reaction force was proposed. The relation between the ground reaction force and joint motion is derived using the D’Almbert principle... A new method of desired gait synthesis for biped walking robot based on the ground reaction force was proposed. The relation between the ground reaction force and joint motion is derived using the D’Almbert principle. In view of dynamic walking with high stability, the ZMP(Zero Moment Point)stability criterion must be considered in the desired gait synthesis. After that, the joint trajectories of biped walking robot are decided by substituting the ground reaction force into the aforesaid relation based on the ZMP criterion. The trajectory of desired ZMP is determined by a fuzzy logic based upon the body posture of biped walking robot. The proposed scheme is simulated and experimented on a 10 degree of freedom biped walking robot. The results indicate that the proposed method is feasible. 展开更多
关键词 BIPED walking robot DESIRED GAIT SYNTHESIS ZMP Ground reaction force Fuzzy logic
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部