In this paper,a dual-band graphene-based frequency selective surface(GFSS)is investigated and the operating mechanism of this GFSS is analyzed.By adjusting the bias voltage to control the graphene chemical po-tential ...In this paper,a dual-band graphene-based frequency selective surface(GFSS)is investigated and the operating mechanism of this GFSS is analyzed.By adjusting the bias voltage to control the graphene chemical po-tential between 0 eV and 0.5 eV,the GFSS can achieve four working states:dual-band passband,high-pass lowimpedance,low-pass high-impedance,and band-stop.Based on this GFSS,a hexagonal radome on a broadband omnidirectional monopole antenna is proposed,which can achieve independent 360°six-beam omnidirectional scanning at 1.08 THz and 1.58 THz dual bands.In addition,while increasing the directionality,the peak gains of the dual bands reach 7.44 dBi and 6.67 dBi,respectively.This work provides a simple method for realizing multi-band terahertz multi-beam reconfigurable antennas.展开更多
A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of th...A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of the received signal power in the mobile station, including both desired and interference signal power, has been introduced into the handover initiation algorithm. Along with the idea, we present three models of handover initiation algorithm with the shadowing process of Gaussian distribution. The formulation of handover initiation probability of those algorithms is also analyzed. The validity of the presented models has been checked through the comparison with simulation results. The results present the performance characteristics of handover initiation vary with cluster number and base-station antenna elevation angle.展开更多
For spaceborne multi-beam antennas(MBAs), time division multiplexed switching(TDMS) based calibration receiver can reduce implementation costs effectively and is very suitable for large-scale applications. However, in...For spaceborne multi-beam antennas(MBAs), time division multiplexed switching(TDMS) based calibration receiver can reduce implementation costs effectively and is very suitable for large-scale applications. However, in practice, random phase noise imposed by noisy local oscillators can cause significant performance degradation in TDMS-based calibration systems. Characterization of phase noise effects is therefore crucial for practical applications. In this paper, we analyze the impact of phase noise on the calibration performance for a MBA system. Specifically, we derive the relationship between the probability of correct amplitude/phase estimation and various practical factors involving the signal-to-noise ratio(SNR), the standard deviation of phase noise, the given tolerance region, and the length of the spreading code. The results provide high efficiency for evaluating the calibration performance of the MBAs based on TDMS, especially for precisely anticipating the impact of phase noise. Finally, the accuracy of the derived results is assessed by simulations in different scenarios.展开更多
With the rapid development of mobile communication technology and the explosion of data traffic,high capacity communication with high data transmission rate is urgently needed in densely populated areas.Since multibea...With the rapid development of mobile communication technology and the explosion of data traffic,high capacity communication with high data transmission rate is urgently needed in densely populated areas.Since multibeam antennas are able to increase the communication capacity and support a high data transmission rate,they have attracted a lot of research interest and have been actively investigated for base station applications.In addition,since multi-beam antennas based on Butler matrix(MABBMs)have the advantages of high gain,easy design and low profile,they are suitable for base station applications.The purposes of this paper is to provide an overview of the existing MABBMs.The specifications,principles of operation,design method and implementation of MABBMs are presented.The challenge of MABBMs for 3G/LTE/5G/B5G base station applications is discussed in the end.展开更多
This paper proposes a novel micro/macro beam coverage scheme used in High Altitude Platform System (HAPS) Code Division Multiple Access (CDMA) systems. A relief of traffic burden in hot spot areas is achieved by embed...This paper proposes a novel micro/macro beam coverage scheme used in High Altitude Platform System (HAPS) Code Division Multiple Access (CDMA) systems. A relief of traffic burden in hot spot areas is achieved by embedding micro-beams into the macro-beams at the hot spot locations, together with appropriate power ratio control and user ratio control. The simulation results show that the hot spot problem can be relieved efficiently with the presented configuration, and a higher and more stable system capacity is expectable despite the variation of user distribution.展开更多
基金Supported by the Natural Science Foundation of Tibet Autonomous Region(XZ202401ZR0025)the National Natural Science Founda-tion of China(62164011,62301081)the Natural Science Foundation of Shaanxi Province(2022JQ-589)。
文摘In this paper,a dual-band graphene-based frequency selective surface(GFSS)is investigated and the operating mechanism of this GFSS is analyzed.By adjusting the bias voltage to control the graphene chemical po-tential between 0 eV and 0.5 eV,the GFSS can achieve four working states:dual-band passband,high-pass lowimpedance,low-pass high-impedance,and band-stop.Based on this GFSS,a hexagonal radome on a broadband omnidirectional monopole antenna is proposed,which can achieve independent 360°six-beam omnidirectional scanning at 1.08 THz and 1.58 THz dual bands.In addition,while increasing the directionality,the peak gains of the dual bands reach 7.44 dBi and 6.67 dBi,respectively.This work provides a simple method for realizing multi-band terahertz multi-beam reconfigurable antennas.
文摘A new multi-cell cellular configuration networks is provided for analysis of handover initiation probability, which is based on multi-beam base-station antenna splitting in the elevation-radiating plane. The sum of the received signal power in the mobile station, including both desired and interference signal power, has been introduced into the handover initiation algorithm. Along with the idea, we present three models of handover initiation algorithm with the shadowing process of Gaussian distribution. The formulation of handover initiation probability of those algorithms is also analyzed. The validity of the presented models has been checked through the comparison with simulation results. The results present the performance characteristics of handover initiation vary with cluster number and base-station antenna elevation angle.
基金supported by the NSFC(Joint Foundation of NSFC&Fundamental Research for General Purpose Technologies)under Grant U1636125
文摘For spaceborne multi-beam antennas(MBAs), time division multiplexed switching(TDMS) based calibration receiver can reduce implementation costs effectively and is very suitable for large-scale applications. However, in practice, random phase noise imposed by noisy local oscillators can cause significant performance degradation in TDMS-based calibration systems. Characterization of phase noise effects is therefore crucial for practical applications. In this paper, we analyze the impact of phase noise on the calibration performance for a MBA system. Specifically, we derive the relationship between the probability of correct amplitude/phase estimation and various practical factors involving the signal-to-noise ratio(SNR), the standard deviation of phase noise, the given tolerance region, and the length of the spreading code. The results provide high efficiency for evaluating the calibration performance of the MBAs based on TDMS, especially for precisely anticipating the impact of phase noise. Finally, the accuracy of the derived results is assessed by simulations in different scenarios.
文摘With the rapid development of mobile communication technology and the explosion of data traffic,high capacity communication with high data transmission rate is urgently needed in densely populated areas.Since multibeam antennas are able to increase the communication capacity and support a high data transmission rate,they have attracted a lot of research interest and have been actively investigated for base station applications.In addition,since multi-beam antennas based on Butler matrix(MABBMs)have the advantages of high gain,easy design and low profile,they are suitable for base station applications.The purposes of this paper is to provide an overview of the existing MABBMs.The specifications,principles of operation,design method and implementation of MABBMs are presented.The challenge of MABBMs for 3G/LTE/5G/B5G base station applications is discussed in the end.
文摘This paper proposes a novel micro/macro beam coverage scheme used in High Altitude Platform System (HAPS) Code Division Multiple Access (CDMA) systems. A relief of traffic burden in hot spot areas is achieved by embedding micro-beams into the macro-beams at the hot spot locations, together with appropriate power ratio control and user ratio control. The simulation results show that the hot spot problem can be relieved efficiently with the presented configuration, and a higher and more stable system capacity is expectable despite the variation of user distribution.