For conventional optical polarization imaging of underwater target,the polarization degree of backscatter should be pre-measured by averaging the pixel intensities in the no target region of the polarization images,an...For conventional optical polarization imaging of underwater target,the polarization degree of backscatter should be pre-measured by averaging the pixel intensities in the no target region of the polarization images,and the polarization property of the target is assumed to be completely depolarized.When the scattering background is unseen in the field of view or the target is polarized,conventional method is helpless in detecting the target.An improvement is to use lots of co-polarization and cross polarization detection components.We propose a polarization subtraction method to estimate depolarization property of the scattering noise and target signal.And experiment in a quartz cuvette container is performed to demonstrate the effectiveness of the proposed method.The results show that the proposed method can work without scattering background reference,and further recover the target along with smooth surface for polarization preserving response.This study promotes the development of optical polarization imaging systems in underwater environments.展开更多
A topographic target light scattering-differential optical absorption spectroscopy ('IbTaL-DOA~) system is de- veloped for measuring average concentrations along a known optical path and studying surface-near distr...A topographic target light scattering-differential optical absorption spectroscopy ('IbTaL-DOA~) system is de- veloped for measuring average concentrations along a known optical path and studying surface-near distributions of atmospheric trace gases. The telescope of the ToTaL-DOAS system points to targets which are located at known dis- tances from the measurement device and illuminated by sunlight. Average concentrations with high spatial resolution can be retrieved by receiving sunlight reflected from the targets, A filed measurement of NO2 concentration is performed with the ToTaL-DOAS system in Shijiazhuang in the autumn of 2011. The measurement data are compared with con- centrations measured by the point monitoring technique at the same site. The results show that the ToTaL-DOAS system is sensitive to the variation of NO2 concentrations along the optical path.展开更多
The studies were made on the preparation processes of the rare earth metal and alloy target materials and their characterization. In this work the rare earth metals were prepared by electrolysis of the oxide in molten...The studies were made on the preparation processes of the rare earth metal and alloy target materials and their characterization. In this work the rare earth metals were prepared by electrolysis of the oxide in molten salt for Nd metal and metallothermic reduction of the fluorides for Gd, Tb, Dy metals. After vacuum refining and distillation purification these rare earth metals were used for manufacturing the element targets, mosaic targets and as the starting materials of preparing the rare earth-transition metal (RE-TM) alloy targets. The four kinds of Dy-FeCo, NdDy-FeCo, Tb-FeCo and GdTb-FeCo alloy targets with diameter of 100 mm and thickness of 3 mm were prepared using powder metallurgical technique. The oxygen content and microstructure of the prepared RE-TM cast alloys and sintered targets were analyzed. The features and requirements of the RE-TM alloy sputtering target materials were also discussed.展开更多
1 Introduction 1.1 Advantages of DOE 1)High diffraction efficiency; 2)Dispersive; 3)More selectivity of designing parameters; 4)More selectivity of primary materials; 5)Can make components miniature,forming array and ...1 Introduction 1.1 Advantages of DOE 1)High diffraction efficiency; 2)Dispersive; 3)More selectivity of designing parameters; 4)More selectivity of primary materials; 5)Can make components miniature,forming array and integration. 1.2 1.3 megapixel triplet plastic mobile展开更多
The Medium-Resolution Spectral Imager-Ⅱ(MERSI-Ⅱ)instrument aboard China’s Fengyun-3D satellite shares similarities with NASA’s Moderate Resolution Imaging Spectroradiometer(MODIS)sensor,enabling the retrieval of g...The Medium-Resolution Spectral Imager-Ⅱ(MERSI-Ⅱ)instrument aboard China’s Fengyun-3D satellite shares similarities with NASA’s Moderate Resolution Imaging Spectroradiometer(MODIS)sensor,enabling the retrieval of global aerosol optical depth(AOD).However,no officially released operational MERSI-Ⅱ aerosol products currently exist over the ocean.This study focuses on adapting the MODIS dark target(DT)ocean algorithm to the MERSI-Ⅱ sensor.A retrieval test is conducted on the 2019 MERSI-Ⅱ data over the global ocean,and the retrieved AODs are validated against ground-based measurements from the automatic Aerosol Robotic Network(AERONET)and the shipborne Maritime Aerosol Network(MAN).The operational MODIS DT aerosol products are also used for comparison purposes.The results show that MERSI-Ⅱ AOD granule retrievals are in good agreement with MODIS products,boasting high correlation coefficients(R)of up to 0.96 and consistent spatial distribution trends.Furthermore,the MERSI-Ⅱ retrievals perform well in comparison to AERONET and MAN measurements,with high R-values(>0.86).However,the low-value retrievals from MERSI-Ⅱ tend to be slightly overestimated compared to MODIS,despite both AODs displaying a positive bias.Notably,the monthly gridded AODs over the high latitudes of the northern and southern hemispheres suggest that MERSI-Ⅱ exhibits greater stability in space and time,effectively reducing unrealistically high-value noise in the MODIS products.These results illustrate that the MERSI-Ⅱ retrievals meet specific accuracy requirements by maintaining the algorithmic framework and most of the algorithmic assumptions,providing a crucial data supplement for aerosol studies and climate change.展开更多
Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection syste...Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection systems previously in China.It was difficult to adjust the output power,and the anti-interference ability was weak in these systems.In order to resolve these problems,the target detection method based on analog sine-wave modulation was studied.The spectral detecting system was set up in the aspects of working principle,electric circuit,and optical path.Lab testing was performed.The results showed that the reflected signal from the target varied inversely with detection distances.It indicated that it was feasible to establish the target detection system using analog sine-wave modulation technology.Furthermore,quantitative measurement of the reflected optical signal for near-infrared and visible light could be achieved by using this system.The research laid the foundation for the future development of the corresponding instrument.展开更多
Current freeform illumination optical designs are mostly focused on producing prescribed irradiance distributions on planar targets.Here,we aim to design freeform optics that could generate a desired illumination on a...Current freeform illumination optical designs are mostly focused on producing prescribed irradiance distributions on planar targets.Here,we aim to design freeform optics that could generate a desired illumination on a curved target from a point source,which is still a challenge.We reduce the difficulties that arise from the curved target by involving its varying z-coordinates in the iterative wavefront tailoring(IWT)procedure.The new IWT-based method is developed under the stereographic coordinate system with a special mesh transformation of the source domain,which is suitable for light sources with light emissions in semi space such as LED sources.The first example demonstrates that a rectangular flat-top illumination can be generated on an undulating surface by a spherical-freeform lens for a Lambertian source.The second example shows that our method is also applicable for producing a non-uniform irradiance distribution in a circular region of the undulating surface.展开更多
The supersonic gas-jet target is an important experimental target for laser wakefield acceleration(LWFA),which has great potential for driving novel radiation sources such as betatron radiation and Compton scattering ...The supersonic gas-jet target is an important experimental target for laser wakefield acceleration(LWFA),which has great potential for driving novel radiation sources such as betatron radiation and Compton scattering gamma rays.According to different electron acceleration requirements,it is necessary to provide specific supersonic gas jets with different density profiles to generate electron beams with high quality and high repetition rates.In this study,the interference images and density profiles of different gas-jet targets were obtained through a modified Nomarski interference diagnosis system.The relationships between the gas density and back pressure,nozzle structure,and other key parameters were studied.Targets with different characteristics are conducive to meeting the various requirements of LWFA.展开更多
对国外转塔式光电瞄准吊舱进行了划代,介绍了典型第三代吊舱的主要技术特点,定义了衡量光电吊舱集成度的四个评价标准:通光孔径与舱体直径之比、通光孔径的立方与系统重量之比,舱体直径的立方与系统重量之比以及有效载荷重量与系统重量...对国外转塔式光电瞄准吊舱进行了划代,介绍了典型第三代吊舱的主要技术特点,定义了衡量光电吊舱集成度的四个评价标准:通光孔径与舱体直径之比、通光孔径的立方与系统重量之比,舱体直径的立方与系统重量之比以及有效载荷重量与系统重量之比,实现了从宏观层级对性能相近的光电瞄准吊舱功能密度或技术水平的定量评价。介绍了国外典型装备的发展状况,重点针对美国MTS-B吊舱、土耳其ASELFLIR350吊舱及之后的400/500、加拿大MX-15D吊舱、法国EUROFLIR410吊舱和德国ARGOS II HDT等典型产品进行了对比分析,介绍了各自的技术风格、特点和重要载荷;通过正向设计评估验证了MTS-B前置望远系统的性能指标和ASELFLIR350的光学有效载荷;总结了现代光电瞄准吊舱的几大趋同化技术特点:多波段共孔径折反式主系统+旁轴小口径次系统的光机架构正取得共识、多种波段的激光探测技术日益倾向主动光学方向、基于多轴多框平台和快反镜相结合的复合轴控制技术正在普及、详查探测更注重目标细节区域增强、多波段图像融合信息处理技术在显控中越发重要。展开更多
基金National Natural Science Foundation of China(Nos.11847069,11847127)Science Foundation of North University of China(No.XJJ20180030)。
文摘For conventional optical polarization imaging of underwater target,the polarization degree of backscatter should be pre-measured by averaging the pixel intensities in the no target region of the polarization images,and the polarization property of the target is assumed to be completely depolarized.When the scattering background is unseen in the field of view or the target is polarized,conventional method is helpless in detecting the target.An improvement is to use lots of co-polarization and cross polarization detection components.We propose a polarization subtraction method to estimate depolarization property of the scattering noise and target signal.And experiment in a quartz cuvette container is performed to demonstrate the effectiveness of the proposed method.The results show that the proposed method can work without scattering background reference,and further recover the target along with smooth surface for polarization preserving response.This study promotes the development of optical polarization imaging systems in underwater environments.
基金Project supported by the National High Technology Research and Development of China (Grant No.2009AA063006)the National Natural Science Foundation of China (Grant No. 40905010)the Special Project of Environmental Nonprofit Industry Research,China (Grant No. 201109007)
文摘A topographic target light scattering-differential optical absorption spectroscopy ('IbTaL-DOA~) system is de- veloped for measuring average concentrations along a known optical path and studying surface-near distributions of atmospheric trace gases. The telescope of the ToTaL-DOAS system points to targets which are located at known dis- tances from the measurement device and illuminated by sunlight. Average concentrations with high spatial resolution can be retrieved by receiving sunlight reflected from the targets, A filed measurement of NO2 concentration is performed with the ToTaL-DOAS system in Shijiazhuang in the autumn of 2011. The measurement data are compared with con- centrations measured by the point monitoring technique at the same site. The results show that the ToTaL-DOAS system is sensitive to the variation of NO2 concentrations along the optical path.
基金Former the Ministry of Metallurgical Industry of China (BJ95-06-01)
文摘The studies were made on the preparation processes of the rare earth metal and alloy target materials and their characterization. In this work the rare earth metals were prepared by electrolysis of the oxide in molten salt for Nd metal and metallothermic reduction of the fluorides for Gd, Tb, Dy metals. After vacuum refining and distillation purification these rare earth metals were used for manufacturing the element targets, mosaic targets and as the starting materials of preparing the rare earth-transition metal (RE-TM) alloy targets. The four kinds of Dy-FeCo, NdDy-FeCo, Tb-FeCo and GdTb-FeCo alloy targets with diameter of 100 mm and thickness of 3 mm were prepared using powder metallurgical technique. The oxygen content and microstructure of the prepared RE-TM cast alloys and sintered targets were analyzed. The features and requirements of the RE-TM alloy sputtering target materials were also discussed.
文摘1 Introduction 1.1 Advantages of DOE 1)High diffraction efficiency; 2)Dispersive; 3)More selectivity of designing parameters; 4)More selectivity of primary materials; 5)Can make components miniature,forming array and integration. 1.2 1.3 megapixel triplet plastic mobile
基金supported in part by the National Natural Science Foundation of China(Grant Nos.42471424,41975036,and 42075132)the Fengyun Application Pioneering Project(Grant No.FY-APP024)+1 种基金the State Key Project of National Natural Science Foundation of China-Key projects of joint fund for regional innovation and development(Grant No.U22A20566)the Scientific and Technological Innovation Team of Universities in Henan Province(Grant No.22IRTSTHN008).
文摘The Medium-Resolution Spectral Imager-Ⅱ(MERSI-Ⅱ)instrument aboard China’s Fengyun-3D satellite shares similarities with NASA’s Moderate Resolution Imaging Spectroradiometer(MODIS)sensor,enabling the retrieval of global aerosol optical depth(AOD).However,no officially released operational MERSI-Ⅱ aerosol products currently exist over the ocean.This study focuses on adapting the MODIS dark target(DT)ocean algorithm to the MERSI-Ⅱ sensor.A retrieval test is conducted on the 2019 MERSI-Ⅱ data over the global ocean,and the retrieved AODs are validated against ground-based measurements from the automatic Aerosol Robotic Network(AERONET)and the shipborne Maritime Aerosol Network(MAN).The operational MODIS DT aerosol products are also used for comparison purposes.The results show that MERSI-Ⅱ AOD granule retrievals are in good agreement with MODIS products,boasting high correlation coefficients(R)of up to 0.96 and consistent spatial distribution trends.Furthermore,the MERSI-Ⅱ retrievals perform well in comparison to AERONET and MAN measurements,with high R-values(>0.86).However,the low-value retrievals from MERSI-Ⅱ tend to be slightly overestimated compared to MODIS,despite both AODs displaying a positive bias.Notably,the monthly gridded AODs over the high latitudes of the northern and southern hemispheres suggest that MERSI-Ⅱ exhibits greater stability in space and time,effectively reducing unrealistically high-value noise in the MODIS products.These results illustrate that the MERSI-Ⅱ retrievals meet specific accuracy requirements by maintaining the algorithmic framework and most of the algorithmic assumptions,providing a crucial data supplement for aerosol studies and climate change.
基金Supported by the National“863”Project of China(2010AA10A301)National Technology Support Project for the 12th Five-year Plan(2011BAD20B07)
文摘Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection systems previously in China.It was difficult to adjust the output power,and the anti-interference ability was weak in these systems.In order to resolve these problems,the target detection method based on analog sine-wave modulation was studied.The spectral detecting system was set up in the aspects of working principle,electric circuit,and optical path.Lab testing was performed.The results showed that the reflected signal from the target varied inversely with detection distances.It indicated that it was feasible to establish the target detection system using analog sine-wave modulation technology.Furthermore,quantitative measurement of the reflected optical signal for near-infrared and visible light could be achieved by using this system.The research laid the foundation for the future development of the corresponding instrument.
基金We are grateful for financial supports from National Key Research and Development Program(Grant No.2017YFA0701200)National Science Foundation of China(No.11704030).The author Z X Feng thanks the valuable discussions with Xu-Jia Wang and Rengmao Wu.
文摘Current freeform illumination optical designs are mostly focused on producing prescribed irradiance distributions on planar targets.Here,we aim to design freeform optics that could generate a desired illumination on a curved target from a point source,which is still a challenge.We reduce the difficulties that arise from the curved target by involving its varying z-coordinates in the iterative wavefront tailoring(IWT)procedure.The new IWT-based method is developed under the stereographic coordinate system with a special mesh transformation of the source domain,which is suitable for light sources with light emissions in semi space such as LED sources.The first example demonstrates that a rectangular flat-top illumination can be generated on an undulating surface by a spherical-freeform lens for a Lambertian source.The second example shows that our method is also applicable for producing a non-uniform irradiance distribution in a circular region of the undulating surface.
基金This work was supported by the Programs for the National Natural Science Foundation of China(Nos.11975316,11775312,12005305 and 61905287)the Continue Basic Scientific Research Project(Nos.WDJC-2019-02 and BJ20002501).
文摘The supersonic gas-jet target is an important experimental target for laser wakefield acceleration(LWFA),which has great potential for driving novel radiation sources such as betatron radiation and Compton scattering gamma rays.According to different electron acceleration requirements,it is necessary to provide specific supersonic gas jets with different density profiles to generate electron beams with high quality and high repetition rates.In this study,the interference images and density profiles of different gas-jet targets were obtained through a modified Nomarski interference diagnosis system.The relationships between the gas density and back pressure,nozzle structure,and other key parameters were studied.Targets with different characteristics are conducive to meeting the various requirements of LWFA.
文摘对国外转塔式光电瞄准吊舱进行了划代,介绍了典型第三代吊舱的主要技术特点,定义了衡量光电吊舱集成度的四个评价标准:通光孔径与舱体直径之比、通光孔径的立方与系统重量之比,舱体直径的立方与系统重量之比以及有效载荷重量与系统重量之比,实现了从宏观层级对性能相近的光电瞄准吊舱功能密度或技术水平的定量评价。介绍了国外典型装备的发展状况,重点针对美国MTS-B吊舱、土耳其ASELFLIR350吊舱及之后的400/500、加拿大MX-15D吊舱、法国EUROFLIR410吊舱和德国ARGOS II HDT等典型产品进行了对比分析,介绍了各自的技术风格、特点和重要载荷;通过正向设计评估验证了MTS-B前置望远系统的性能指标和ASELFLIR350的光学有效载荷;总结了现代光电瞄准吊舱的几大趋同化技术特点:多波段共孔径折反式主系统+旁轴小口径次系统的光机架构正取得共识、多种波段的激光探测技术日益倾向主动光学方向、基于多轴多框平台和快反镜相结合的复合轴控制技术正在普及、详查探测更注重目标细节区域增强、多波段图像融合信息处理技术在显控中越发重要。