We give a survey on 4-dimensional manifolds with positive isotropic curvature. We will introduce the work of B. L. Chen, S. H. Tang and X. P. Zhu on a complete classification theorem on compact four-manifolds with pos...We give a survey on 4-dimensional manifolds with positive isotropic curvature. We will introduce the work of B. L. Chen, S. H. Tang and X. P. Zhu on a complete classification theorem on compact four-manifolds with positive isotropic curvature (PIC). Then we review an application of the classification theorem, which is from Chen and Zhu's work. Finally, we discuss our recent result on the path-connectedness of the moduli spaces of Riemannian metrics with positive isotropic curvature.展开更多
Let a finite group act semi-freely on a closed symplectic four-manifold with a 2-dimensional fixed point set. Then we show that the relative Gromov-Witten invariants are the same as the invariants on the quotient set-...Let a finite group act semi-freely on a closed symplectic four-manifold with a 2-dimensional fixed point set. Then we show that the relative Gromov-Witten invariants are the same as the invariants on the quotient set-up with respect to the fixed point set.展开更多
基金Acknowledgements The first author was partially supported by the National Natural Science Foundation of China (Grant Nos. 11025107, 11521101) and a grant (No. 141gzd02) from Sun Yat-sen University.
文摘We give a survey on 4-dimensional manifolds with positive isotropic curvature. We will introduce the work of B. L. Chen, S. H. Tang and X. P. Zhu on a complete classification theorem on compact four-manifolds with positive isotropic curvature (PIC). Then we review an application of the classification theorem, which is from Chen and Zhu's work. Finally, we discuss our recent result on the path-connectedness of the moduli spaces of Riemannian metrics with positive isotropic curvature.
基金Supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2010-0011145)
文摘Let a finite group act semi-freely on a closed symplectic four-manifold with a 2-dimensional fixed point set. Then we show that the relative Gromov-Witten invariants are the same as the invariants on the quotient set-up with respect to the fixed point set.