In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending ...In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending tester.We prepared two single-crystal samples,oriented along the<1120>and<1010>directions,to assess the mechanisms of deformation when the initial basal slip was suppressed.In the<1120>sample,the primary{1012}twin(T1)was confirmed along the<1120>direction of the sample on the compression side with an increase in bending stress.In the<1010>sample,T1 and the secondary twin(T2)were confirmed to be along the<1120>direction,with an orientation of±60°with respect to the bending stress direction,and their direction matched with(0001)in T1 and T2.This result implies that crystallographically,the basal slip occurs readily.In addition,the<1010>sample showed the double twin in T1 on the compression side and the tertiary twin along the<1010>direction on the tension side.These results demonstrated that the maximum bending stress and displacement changed significantly under the bend loading because the deformation mechanisms were different for these single crystals.Therefore,the correlation between bending behavior and twin orientation was determined,which would be helpful for optimizing the bending properties of Mg-based materials.展开更多
An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block o...An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block of the Shengtuo Oilfield has entered the stage of ultra-high water cut(97.2%).Poor adaptability of the well pattern,ineffective water injection cycle and low efficiency of engineering measures(such as workover,re-perforation and utilization of high-capacity pumps)are the significant problems in the ultra-high water-cut reservoir.In order to accurately describe the oil and water flow characteristics,relative permeability curves at high water injection multiple(injected pore volume)and a semiquantitative method is applied to perform fine reservoir simulation of the Sand group 3e7 in the Block.An accurate reservoir model is built and history matching is performed.The distribution characteristics of remaining oil in lateral and vertical directions are quantitatively simulated and analyzed.The results show that the numerical simulation considering relative permeability at high injection multiple can reflect truly the remaining oil distribution characteristics after water flooding in an ultrahigh water-cut stage.The distribution of remaining oil saturation can be mapped more accurately and quantitatively by using the‘four-points and five-types’classification method,providing a basis for potential tapping of various remaining oil types of oil reservoirs in late-stage of development with high water-cut.展开更多
This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(...This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(0))-βφ(u′(ξ))=0,γφ(u(1))+δφ(u′(η))0,where φ(x) = |x|^p-2x,p 〉 1, a(t) may be singular at t = 0 and/or t = 1. By applying Leggett-Williams fixed point theorem and Schauder fixed point theorem, the sufficient conditions for the existence of multiple (at least three) positive solutions to the above four-point boundary value problem are provided. An example to illustrate the importance of the results obtained is also given.展开更多
A class of higher-order four-point boundary value problems with a p-Laplacian operator is studied. By use of a fixed point theorem in cones, sufficient conditions for the existence of positive solutions for the bounda...A class of higher-order four-point boundary value problems with a p-Laplacian operator is studied. By use of a fixed point theorem in cones, sufficient conditions for the existence of positive solutions for the boundary value problems are obtained.展开更多
This paper deals with the existence of solutions to the p(t)-Laplacian equation with four-point boundary conditions. It is shown, by Leray-Schauder fixed point theorem and degree method, that under suitable conditio...This paper deals with the existence of solutions to the p(t)-Laplacian equation with four-point boundary conditions. It is shown, by Leray-Schauder fixed point theorem and degree method, that under suitable conditions, solutions of the problem exist. The interesting point is that p(t) is a general function.展开更多
In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive mod...In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive model that could reasonably consider the bi-modulus property of materials,and the lack of simple and reliable measurement methods for the tensile elastic parameters of materials,scientists and engineers always neglect the effect of the bi-modulus property of materials in engineering design and numerical simulation.To solve this problem,this study utilizes the uncoupled strain-driven constitutive model proposed by Latorre and Montáns(2020)to systematically study the distributions and magnitudes of stresses and strains of bi-modulus materials in the three-point bending test through the numerical method.Furthermore,a new method to synchronously measure the tensile and compressive elastic moduli of materials through the four-point bending test is proposed.The numerical results show that the bi-modulus property of materials has a significant effect on the stress,strain and displacement in the specimen utilized in the three-point and four-point bending tests.Meanwhile,the results from the numerical tests,in which the elastic constitutive model proposed by Latorre and Montáns(2020)is utilized,also indicate that the newly proposed measurement method has a good reliability.Although the new measurement method proposed in this study can synchronously and effectively measure the tensile and compressive elastic moduli,it cannot measure the tensile and compressive Poisson’s ratios.展开更多
An end-effector for a flexible drilling robot is designed, and a novel four-point algorithm of normal attitude regulation for this end-effector is presented. Four non-coplanar points can define a unique sphere tangent...An end-effector for a flexible drilling robot is designed, and a novel four-point algorithm of normal attitude regulation for this end-effector is presented. Four non-coplanar points can define a unique sphere tangent to them in spatial geometry, and the center point of the sphere and the radius can be calculated. The shape of a workpiece surface in the machining area is approximately regarded as such a sphere. A vector from the machining point to the center point is thus approximately regarded as a normal vector to the workpiece surface. By this principle, the algorithm first measures four coordinates on the curve in the drilling region using four sensors and calculates the normal vector at the drilling point, then calculates the error between the normal vector and the axis of the spindle. According to this error, the algorithm further figures out the angles of two revolving axes on the end- effector and the displacements of three linear axes on the robot main body, thus it implements the function of adjusting the spindle to be perpendicular to the curve at the drilling point. Simulation results of two kinds of curved surfaces show that accuracy and efficiency can be realized using the proposed algorithm.展开更多
The four point bending method was applied to measure X ray elastic constants(XEC) of (422) and (331) planes of TiN coating. Elastic Modulus and XECs of all the crystal planes were calculated by Kroner method. The resu...The four point bending method was applied to measure X ray elastic constants(XEC) of (422) and (331) planes of TiN coating. Elastic Modulus and XECs of all the crystal planes were calculated by Kroner method. The results from the calculation and the experiment were compared. It is concluded that the XECs values of same film prepared by different techniques scatter a little because of the effects of stoichiometric proportion and microstructure of films. [展开更多
Three beam samples of bridge deck pavement were prepared, with gradation types of AC-13, and AC-16 and combined AC-13+AC-16. Four-point bending test was adopted to investigate the fatigue performance of these beam sa...Three beam samples of bridge deck pavement were prepared, with gradation types of AC-13, and AC-16 and combined AC-13+AC-16. Four-point bending test was adopted to investigate the fatigue performance of these beam samples. The experimental results indicate that the initial bending stiffness is related to the type of beam sample samples decreases as the increase of the controlled strain fatigue resistance and bigger limiting bending strain at pared with single beam sample, the fatigue performance and testing temperature. Fatigue life of these level. The AC-13 beam sample exhibits better the given strain level and temperature. Corn- of combining beam samnle is relatively poor.展开更多
This paper examines the evolution of the interfacial deflection energy release rates in multilayered structures under four-point bending.The J-integral and the extended finite element method(XFEM)are adopted to invest...This paper examines the evolution of the interfacial deflection energy release rates in multilayered structures under four-point bending.The J-integral and the extended finite element method(XFEM)are adopted to investigate the evolution of the interfacial deflection energy release rates of composite structures.Numerical results not only verify the accuracy of analytical solutions for the steady-state interfacial deflection energy release rate,but also provide the evolutionary history of the interfacial deflection energy release rate under different crack lengths.In addition,non-dimensional parametric analyses are performed to discuss the effects of normalized ratios of the crack length,the elastic modulus,and the thickness on the interfacial deflection energy release rate.The results demonstrate that the elastic modulus ratio and thickness ratio have a distinct influence on the interfacial deflection energy release rate for multilayered beams.Furthermore,an unstable interfacial crack tends to occur for elastic multilayer beams with higher elastic modulus on the upper sub-beam under bending moments.The unstable interfacial fracture shows a decreasing interfacial deflection energy release rate with an increasing interfacial crack length.展开更多
The objective of this paper is to study the residual ultimate strength of box beams with impact-induced damage,as a model of what may occur in ship hulls.The bottom and side plates of ship hulls can suffer denting or ...The objective of this paper is to study the residual ultimate strength of box beams with impact-induced damage,as a model of what may occur in ship hulls.The bottom and side plates of ship hulls can suffer denting or fracture damage due to grounding,collision and other contacts during the ship’s service life and these impact-induced damages could result in considerable strength degradation.Box beams are firstly subjected to impact loading and then four-point bending loading is imposed on the damaged structures to assess the residual strength using ANSYS/LS_DYNA.The ultimate moment and collapse modes are discussed considering the effect of impact location.The impact-induced deformation is introduced in the four-point bending simulation,and the impact-induced stress is included or not to determine the effect of residual stress and distortion after impact.It is shown that impact location has significant influence on the residual ultimate bending moment of the damaged box beam providing that the impact energy is kept constant.The collapse modes also change when the impactor strikes on different locations.Damaged hard corner and inclined neutral axes might explain the reduction of ultimate strength and diverse collapse modes.The residual stress in the box beam after impact may increase or decrease the ultimate strength depending on impact location.展开更多
Low energy metallic ions, generated by a Q-switched Nd:YAG laser (1064-nm wavelength, 10-mJ energy, 9-nm 12-ns-pulse width, 1011 W/cm2 intensity) irradiated on a silicon substrate to modify various properties, such...Low energy metallic ions, generated by a Q-switched Nd:YAG laser (1064-nm wavelength, 10-mJ energy, 9-nm 12-ns-pulse width, 1011 W/cm2 intensity) irradiated on a silicon substrate to modify various properties, such as electrical, morphological, and structural modifications. Thomson parabola technique is used to calculate the energy of these metallic ions whereas the electrical conductivity is calculated with the help of Four-point probe. Interestingly circular tracks forming chain like damage trails are produced via these energetic ions which are carefully examined by optical microscopy. It is observed that excitation, ionization, and cascade collisions are responsible for surface modifications of irradiated samples. Four-point probe analysis revealed that the electrical conductivity of substrate has reduced with increasing trend of atomic number of irradiated metallic ions (A1, Ti, Cu, and Au). The x-ray diffraction analysis elucidated the crystallographic changes leading to reduction of grain size of N-type silicon substrate, which is also associated with the metallic ions used. The decreasing trend of conductivity and grain size is due to thermal stresses, scattering effect, structural imperfections, and non-uniform conduction of energy absorbed by substrate atoms after the ion irradiation.展开更多
We re-examine physical causal propagators for scalar and pseudoscalar bound states at finite temperature in a chiral NJL model, defined by four-point amputated functions subtracted through the gap equation, and prove...We re-examine physical causal propagators for scalar and pseudoscalar bound states at finite temperature in a chiral NJL model, defined by four-point amputated functions subtracted through the gap equation, and prove that they are completely equivalent in the imaginary-time and real-time formalisms by separating carefully the imaginary part of the zero-temperature loop integral. It is shown that the same thermal transformation matrix of the matrix propagators for these bound states in the real-time formalism is precisely the one of the matrix propagator for an elementary scalar particle and this fact shows the similarity of thermodynamic property between a composite and elementary scalar particle. The retarded and advanced propagators for these bound states are also given explicitly from the imaginary-time formalism.展开更多
[Objectives]The research aimed to study application of digital technique in color test of Compound Lonicera Granules.[Methods]A method of color identification of Compound Lonicera Granules based on digital technology ...[Objectives]The research aimed to study application of digital technique in color test of Compound Lonicera Granules.[Methods]A method of color identification of Compound Lonicera Granules based on digital technology was proposed,and the"four-point collection method of color data"was summarized through experiments.[Results]The method was used to test color of 168 batches of Compound Lonicera Granules,and it was found that the method had the advantages of fast speed,high accuracy and good repeatability.[Conclusions]The method was used to test color of 168 batches of Compound Lonicera Granules,and it was found that the method had the advantages of fast speed,high accuracy and good repeatability.展开更多
This paper describes the four-point bending test for hollow rectangular aluminum alloy beams.Test samples vary from 6061-T6 and 6063-T heat treatment of aluminum alloys,and the width-to-thickness ratios range from 2.8...This paper describes the four-point bending test for hollow rectangular aluminum alloy beams.Test samples vary from 6061-T6 and 6063-T heat treatment of aluminum alloys,and the width-to-thickness ratios range from 2.8 cm to 20.5 cm.According to the report,measurement of geometric and material properties is the complete sample of load-deflection history.Local buckling failure modes were observed,including material yield and tensile failure.Further experimental data were collected from the literature.The finite element(FE)model was developed and validated with the test results,then used to perform a parameter study.Experimental and numerical results were used to evaluate the flexural performance according to standards in Australia and New Zealand,Europe,and China.展开更多
In vitro cell loading experiments are used to investigate stimulation of strain to cellular proliferation. As the flowing conditions of culture fluid in loading systems has been little known, strictly people can not d...In vitro cell loading experiments are used to investigate stimulation of strain to cellular proliferation. As the flowing conditions of culture fluid in loading systems has been little known, strictly people can not detect the influence of strain to cellular proliferation exactly because shear flow can enhance cell proliferation either. Based on the working principle and cyclic loading parameters, we simplify Navier-Stokes equation to describe the flow of culture fluid on substrates of uniaxial and equi-biaxial flat tensile loading systems and four point bending system. With approximate solutions, the distributions of velocity field and wall shear flow to cells are gained. Results show: shear flows are zero in the middle (or fixed point or line) of substrate for all systems, and they get larger proportionally to distance from middle and substrate elongate; the shear flow on the substrate of four point bending system is much greater than those of others. This shear flow in four point bending system, confirmed by Owan, I., et al with OPN mRNA increase in their experiment, could cause more influence to osteoblast-like cells than that caused by strain. We estimate the average magnitude of shear stress in Owan’s device, the results are consistent with other experimental data about shear flow. In conclusion our study makes it possible to differentiate the influence of strain on cellular proliferation to that of shear flow in loading experiments with the devices mentioned above quantitatively.展开更多
This paper deals with a four-point boundary value problem [φ(u')]' = f(t, u, u'),a < t < b with u(a) - u(ao) = A, u(b) - u(bo) = B, where a < a0 <b0 < b.
This paper is concerned with the existence of solutions for a second-order four-point boundary value problem at resonance. The main methods depend on the technique of the upper and lower solutions and the coincidence ...This paper is concerned with the existence of solutions for a second-order four-point boundary value problem at resonance. The main methods depend on the technique of the upper and lower solutions and the coincidence degree theory.展开更多
The scalar one-loop four-point function with one massless vertex is evaluated analytically by employing the loop regularization method. According to the method, a characteristic scale μs is introduced to regularize t...The scalar one-loop four-point function with one massless vertex is evaluated analytically by employing the loop regularization method. According to the method, a characteristic scale μs is introduced to regularize the divergent integrals. The infrared divergent parts, which take the form of ln2(λ^(2)/μ_(s)^(2))and ln(λ^(2)/μ_(s)^(2))as μ_(s)→ 0 where λ is a constant and expressed in terms of masses and Mandelstam variables, and the infrared stable parts are well separated. The result is shown explicitly via 44 dilogarithms in the kinematic sector in which our evaluation is valid.展开更多
Fiber-reinforced polymers(FRPs)have received considerable research attention because of their high strength,corrosion resistance,and low weight.However,owing to the lack of ductility in this material and the quasi-bri...Fiber-reinforced polymers(FRPs)have received considerable research attention because of their high strength,corrosion resistance,and low weight.However,owing to the lack of ductility in this material and the quasi-brittle behavior of concrete,FRP-reinforced concrete(FRP-RC)beams,even with flexural failure,do not fail in a ductile manner.Because the limited deformation capacity of FRP-RC beams depends on the ductility of their compression zones,the present study proposes using a precast confined concrete block(PCCB)in the compression zone to improve the ductility of the beams.A control beam and four beams with different PCCBs were cast and tested under four-point bending conditions.The control beam failed due to shear,and the PCCBs exhibited different confinements and perforations.The goal was to find an appropriate PCCB for use in the compression zone of the beams,which not only improved the ductility but also changed the failure mode of the beams from shear to flexural.Among the employed blocks,a ductile PCCB with low equivalent compressive strength increased the ductility ratio of the beam to twice that of the control beam.The beam failed in pure flexure with considerable deformation capacity and without significant stiffness reduction.展开更多
基金supported by The AMADA FOUNDATION[grant number AF-2022030-B3]JSPS KAKENHI[grant numbers JP16K05961 and JP19K04065]。
文摘In this study,we explored the deformation mechanisms of Mg single crystals using a combination of scanning electron microscopy and electron backscattered diffraction in conjunction with a dedicated four-point bending tester.We prepared two single-crystal samples,oriented along the<1120>and<1010>directions,to assess the mechanisms of deformation when the initial basal slip was suppressed.In the<1120>sample,the primary{1012}twin(T1)was confirmed along the<1120>direction of the sample on the compression side with an increase in bending stress.In the<1010>sample,T1 and the secondary twin(T2)were confirmed to be along the<1120>direction,with an orientation of±60°with respect to the bending stress direction,and their direction matched with(0001)in T1 and T2.This result implies that crystallographically,the basal slip occurs readily.In addition,the<1010>sample showed the double twin in T1 on the compression side and the tertiary twin along the<1010>direction on the tension side.These results demonstrated that the maximum bending stress and displacement changed significantly under the bend loading because the deformation mechanisms were different for these single crystals.Therefore,the correlation between bending behavior and twin orientation was determined,which would be helpful for optimizing the bending properties of Mg-based materials.
基金funded by SINOPEC Science and Technology Project P18080by National Energy Administration Research and Development Center Project.
文摘An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block of the Shengtuo Oilfield has entered the stage of ultra-high water cut(97.2%).Poor adaptability of the well pattern,ineffective water injection cycle and low efficiency of engineering measures(such as workover,re-perforation and utilization of high-capacity pumps)are the significant problems in the ultra-high water-cut reservoir.In order to accurately describe the oil and water flow characteristics,relative permeability curves at high water injection multiple(injected pore volume)and a semiquantitative method is applied to perform fine reservoir simulation of the Sand group 3e7 in the Block.An accurate reservoir model is built and history matching is performed.The distribution characteristics of remaining oil in lateral and vertical directions are quantitatively simulated and analyzed.The results show that the numerical simulation considering relative permeability at high injection multiple can reflect truly the remaining oil distribution characteristics after water flooding in an ultrahigh water-cut stage.The distribution of remaining oil saturation can be mapped more accurately and quantitatively by using the‘four-points and five-types’classification method,providing a basis for potential tapping of various remaining oil types of oil reservoirs in late-stage of development with high water-cut.
基金Tutorial Scientific Research Program Foundation of Education Department of Gansu Province(0710-04).
文摘This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(0))-βφ(u′(ξ))=0,γφ(u(1))+δφ(u′(η))0,where φ(x) = |x|^p-2x,p 〉 1, a(t) may be singular at t = 0 and/or t = 1. By applying Leggett-Williams fixed point theorem and Schauder fixed point theorem, the sufficient conditions for the existence of multiple (at least three) positive solutions to the above four-point boundary value problem are provided. An example to illustrate the importance of the results obtained is also given.
基金Sponsored by the National Natural Science Foundation of China (10671012)Doctoral Program Foundation of Education Ministry of China(20050007011)
文摘A class of higher-order four-point boundary value problems with a p-Laplacian operator is studied. By use of a fixed point theorem in cones, sufficient conditions for the existence of positive solutions for the boundary value problems are obtained.
基金The NSF(11271154)of Chinathe Key Lab of Symbolic Computation and Knowledge Engineering of Ministry of Education+1 种基金the 985 program of Jilin Universitythe DR Fund(150152)of Henan University of Technology
文摘This paper deals with the existence of solutions to the p(t)-Laplacian equation with four-point boundary conditions. It is shown, by Leray-Schauder fixed point theorem and degree method, that under suitable conditions, solutions of the problem exist. The interesting point is that p(t) is a general function.
基金funding support from the National Key Research and Development Program of China(Grant No.2022YFC3102402)as well as from the National Natural Science Foundation of China(Grant No.51879257).
文摘In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive model that could reasonably consider the bi-modulus property of materials,and the lack of simple and reliable measurement methods for the tensile elastic parameters of materials,scientists and engineers always neglect the effect of the bi-modulus property of materials in engineering design and numerical simulation.To solve this problem,this study utilizes the uncoupled strain-driven constitutive model proposed by Latorre and Montáns(2020)to systematically study the distributions and magnitudes of stresses and strains of bi-modulus materials in the three-point bending test through the numerical method.Furthermore,a new method to synchronously measure the tensile and compressive elastic moduli of materials through the four-point bending test is proposed.The numerical results show that the bi-modulus property of materials has a significant effect on the stress,strain and displacement in the specimen utilized in the three-point and four-point bending tests.Meanwhile,the results from the numerical tests,in which the elastic constitutive model proposed by Latorre and Montáns(2020)is utilized,also indicate that the newly proposed measurement method has a good reliability.Although the new measurement method proposed in this study can synchronously and effectively measure the tensile and compressive elastic moduli,it cannot measure the tensile and compressive Poisson’s ratios.
基金National Science and Technology Major Project(No.2009ZX04014-023)
文摘An end-effector for a flexible drilling robot is designed, and a novel four-point algorithm of normal attitude regulation for this end-effector is presented. Four non-coplanar points can define a unique sphere tangent to them in spatial geometry, and the center point of the sphere and the radius can be calculated. The shape of a workpiece surface in the machining area is approximately regarded as such a sphere. A vector from the machining point to the center point is thus approximately regarded as a normal vector to the workpiece surface. By this principle, the algorithm first measures four coordinates on the curve in the drilling region using four sensors and calculates the normal vector at the drilling point, then calculates the error between the normal vector and the axis of the spindle. According to this error, the algorithm further figures out the angles of two revolving axes on the end- effector and the displacements of three linear axes on the robot main body, thus it implements the function of adjusting the spindle to be perpendicular to the curve at the drilling point. Simulation results of two kinds of curved surfaces show that accuracy and efficiency can be realized using the proposed algorithm.
文摘The four point bending method was applied to measure X ray elastic constants(XEC) of (422) and (331) planes of TiN coating. Elastic Modulus and XECs of all the crystal planes were calculated by Kroner method. The results from the calculation and the experiment were compared. It is concluded that the XECs values of same film prepared by different techniques scatter a little because of the effects of stoichiometric proportion and microstructure of films. [
基金Funded by the National Natural Science Foundation of China (No. 50878171)
文摘Three beam samples of bridge deck pavement were prepared, with gradation types of AC-13, and AC-16 and combined AC-13+AC-16. Four-point bending test was adopted to investigate the fatigue performance of these beam samples. The experimental results indicate that the initial bending stiffness is related to the type of beam sample samples decreases as the increase of the controlled strain fatigue resistance and bigger limiting bending strain at pared with single beam sample, the fatigue performance and testing temperature. Fatigue life of these level. The AC-13 beam sample exhibits better the given strain level and temperature. Corn- of combining beam samnle is relatively poor.
文摘This paper examines the evolution of the interfacial deflection energy release rates in multilayered structures under four-point bending.The J-integral and the extended finite element method(XFEM)are adopted to investigate the evolution of the interfacial deflection energy release rates of composite structures.Numerical results not only verify the accuracy of analytical solutions for the steady-state interfacial deflection energy release rate,but also provide the evolutionary history of the interfacial deflection energy release rate under different crack lengths.In addition,non-dimensional parametric analyses are performed to discuss the effects of normalized ratios of the crack length,the elastic modulus,and the thickness on the interfacial deflection energy release rate.The results demonstrate that the elastic modulus ratio and thickness ratio have a distinct influence on the interfacial deflection energy release rate for multilayered beams.Furthermore,an unstable interfacial crack tends to occur for elastic multilayer beams with higher elastic modulus on the upper sub-beam under bending moments.The unstable interfacial fracture shows a decreasing interfacial deflection energy release rate with an increasing interfacial crack length.
基金This work contributes to the Strategic Research Plan of the Centre forMarine Technology and Ocean Engineering(CENTEC),which is financed by the Portuguese Foundation for Science and Technology(Fundação para a Ciência e Tecnologia-FCT)under contract UIDB/UIDP/00134/2020.
文摘The objective of this paper is to study the residual ultimate strength of box beams with impact-induced damage,as a model of what may occur in ship hulls.The bottom and side plates of ship hulls can suffer denting or fracture damage due to grounding,collision and other contacts during the ship’s service life and these impact-induced damages could result in considerable strength degradation.Box beams are firstly subjected to impact loading and then four-point bending loading is imposed on the damaged structures to assess the residual strength using ANSYS/LS_DYNA.The ultimate moment and collapse modes are discussed considering the effect of impact location.The impact-induced deformation is introduced in the four-point bending simulation,and the impact-induced stress is included or not to determine the effect of residual stress and distortion after impact.It is shown that impact location has significant influence on the residual ultimate bending moment of the damaged box beam providing that the impact energy is kept constant.The collapse modes also change when the impactor strikes on different locations.Damaged hard corner and inclined neutral axes might explain the reduction of ultimate strength and diverse collapse modes.The residual stress in the box beam after impact may increase or decrease the ultimate strength depending on impact location.
文摘Low energy metallic ions, generated by a Q-switched Nd:YAG laser (1064-nm wavelength, 10-mJ energy, 9-nm 12-ns-pulse width, 1011 W/cm2 intensity) irradiated on a silicon substrate to modify various properties, such as electrical, morphological, and structural modifications. Thomson parabola technique is used to calculate the energy of these metallic ions whereas the electrical conductivity is calculated with the help of Four-point probe. Interestingly circular tracks forming chain like damage trails are produced via these energetic ions which are carefully examined by optical microscopy. It is observed that excitation, ionization, and cascade collisions are responsible for surface modifications of irradiated samples. Four-point probe analysis revealed that the electrical conductivity of substrate has reduced with increasing trend of atomic number of irradiated metallic ions (A1, Ti, Cu, and Au). The x-ray diffraction analysis elucidated the crystallographic changes leading to reduction of grain size of N-type silicon substrate, which is also associated with the metallic ions used. The decreasing trend of conductivity and grain size is due to thermal stresses, scattering effect, structural imperfections, and non-uniform conduction of energy absorbed by substrate atoms after the ion irradiation.
文摘We re-examine physical causal propagators for scalar and pseudoscalar bound states at finite temperature in a chiral NJL model, defined by four-point amputated functions subtracted through the gap equation, and prove that they are completely equivalent in the imaginary-time and real-time formalisms by separating carefully the imaginary part of the zero-temperature loop integral. It is shown that the same thermal transformation matrix of the matrix propagators for these bound states in the real-time formalism is precisely the one of the matrix propagator for an elementary scalar particle and this fact shows the similarity of thermodynamic property between a composite and elementary scalar particle. The retarded and advanced propagators for these bound states are also given explicitly from the imaginary-time formalism.
文摘[Objectives]The research aimed to study application of digital technique in color test of Compound Lonicera Granules.[Methods]A method of color identification of Compound Lonicera Granules based on digital technology was proposed,and the"four-point collection method of color data"was summarized through experiments.[Results]The method was used to test color of 168 batches of Compound Lonicera Granules,and it was found that the method had the advantages of fast speed,high accuracy and good repeatability.[Conclusions]The method was used to test color of 168 batches of Compound Lonicera Granules,and it was found that the method had the advantages of fast speed,high accuracy and good repeatability.
文摘This paper describes the four-point bending test for hollow rectangular aluminum alloy beams.Test samples vary from 6061-T6 and 6063-T heat treatment of aluminum alloys,and the width-to-thickness ratios range from 2.8 cm to 20.5 cm.According to the report,measurement of geometric and material properties is the complete sample of load-deflection history.Local buckling failure modes were observed,including material yield and tensile failure.Further experimental data were collected from the literature.The finite element(FE)model was developed and validated with the test results,then used to perform a parameter study.Experimental and numerical results were used to evaluate the flexural performance according to standards in Australia and New Zealand,Europe,and China.
文摘In vitro cell loading experiments are used to investigate stimulation of strain to cellular proliferation. As the flowing conditions of culture fluid in loading systems has been little known, strictly people can not detect the influence of strain to cellular proliferation exactly because shear flow can enhance cell proliferation either. Based on the working principle and cyclic loading parameters, we simplify Navier-Stokes equation to describe the flow of culture fluid on substrates of uniaxial and equi-biaxial flat tensile loading systems and four point bending system. With approximate solutions, the distributions of velocity field and wall shear flow to cells are gained. Results show: shear flows are zero in the middle (or fixed point or line) of substrate for all systems, and they get larger proportionally to distance from middle and substrate elongate; the shear flow on the substrate of four point bending system is much greater than those of others. This shear flow in four point bending system, confirmed by Owan, I., et al with OPN mRNA increase in their experiment, could cause more influence to osteoblast-like cells than that caused by strain. We estimate the average magnitude of shear stress in Owan’s device, the results are consistent with other experimental data about shear flow. In conclusion our study makes it possible to differentiate the influence of strain on cellular proliferation to that of shear flow in loading experiments with the devices mentioned above quantitatively.
文摘This paper deals with a four-point boundary value problem [φ(u')]' = f(t, u, u'),a < t < b with u(a) - u(ao) = A, u(b) - u(bo) = B, where a < a0 <b0 < b.
文摘This paper is concerned with the existence of solutions for a second-order four-point boundary value problem at resonance. The main methods depend on the technique of the upper and lower solutions and the coincidence degree theory.
文摘The scalar one-loop four-point function with one massless vertex is evaluated analytically by employing the loop regularization method. According to the method, a characteristic scale μs is introduced to regularize the divergent integrals. The infrared divergent parts, which take the form of ln2(λ^(2)/μ_(s)^(2))and ln(λ^(2)/μ_(s)^(2))as μ_(s)→ 0 where λ is a constant and expressed in terms of masses and Mandelstam variables, and the infrared stable parts are well separated. The result is shown explicitly via 44 dilogarithms in the kinematic sector in which our evaluation is valid.
文摘Fiber-reinforced polymers(FRPs)have received considerable research attention because of their high strength,corrosion resistance,and low weight.However,owing to the lack of ductility in this material and the quasi-brittle behavior of concrete,FRP-reinforced concrete(FRP-RC)beams,even with flexural failure,do not fail in a ductile manner.Because the limited deformation capacity of FRP-RC beams depends on the ductility of their compression zones,the present study proposes using a precast confined concrete block(PCCB)in the compression zone to improve the ductility of the beams.A control beam and four beams with different PCCBs were cast and tested under four-point bending conditions.The control beam failed due to shear,and the PCCBs exhibited different confinements and perforations.The goal was to find an appropriate PCCB for use in the compression zone of the beams,which not only improved the ductility but also changed the failure mode of the beams from shear to flexural.Among the employed blocks,a ductile PCCB with low equivalent compressive strength increased the ductility ratio of the beam to twice that of the control beam.The beam failed in pure flexure with considerable deformation capacity and without significant stiffness reduction.