期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
THE ENDPOINT ESTIMATE FOR FOURIER INTEGRAL OPERATORS 被引量:1
1
作者 Guangqing WANG Jie YANG Wenyi CHEN 《Acta Mathematica Scientia》 SCIE CSCD 2021年第2期426-436,共11页
Let T_(a,φ)be a Fourier integral operator defined by the oscillatory integral T_(a,φ)u(x)=1/(2π)^(n)∫_(R^(n))^e^(iφ(x,ξ))a(x,ξ)(u)(ξ)dξ,where a∈S_(e,δ)^(m)andφ∈Φ^(2),satisfying the strong non-degenerate ... Let T_(a,φ)be a Fourier integral operator defined by the oscillatory integral T_(a,φ)u(x)=1/(2π)^(n)∫_(R^(n))^e^(iφ(x,ξ))a(x,ξ)(u)(ξ)dξ,where a∈S_(e,δ)^(m)andφ∈Φ^(2),satisfying the strong non-degenerate condition.It is shown that if0<(e)≤1,0≤δ<1 and m≤e^(2)-n/2,thenT_(α,φ)is a bounded operator from L^(∞()R^(n))to BMO(R^(n)). 展开更多
关键词 fourier integral operators phase function BMO spaces
下载PDF
On the global L^(1)-boundedness of Fourier integral operators with rough amplitude and phase functions
2
作者 Joachim Sindayigaya WU Xiao-mei HUANG Qiang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE 2024年第4期604-613,共10页
Let T_(ϕ,a)be a Fourier integral operator with amplitude a and phase functions ϕ.In this paper,we study the boundedness of Fourier integral operator of rough amplitude a∈L^(∞)S_(ρ)^(m)and rough phase functionsϕ∈L^... Let T_(ϕ,a)be a Fourier integral operator with amplitude a and phase functions ϕ.In this paper,we study the boundedness of Fourier integral operator of rough amplitude a∈L^(∞)S_(ρ)^(m)and rough phase functionsϕ∈L^(m)ϕ^(2)with some measure condition.We prove the global L^(1)boundedness for T_(ϕ,a),when 1/<ρ≤1 and m<ρ-n+1/2.Our theorem improves some known results. 展开更多
关键词 fourier integral operators L1-Boundedness rough amplitude rough phase functions
下载PDF
L^(1) Boundedness of a class of rough Fourier integral operators
3
作者 Xiangrong ZHU Yuchao MA 《Frontiers of Mathematics in China》 CSCD 2023年第4期235-249,共15页
In this note,we consider a class of Fourier integral operators with rough amplitudes and rough phases.When the index of symbols in some range,we prove that they are bounded on L^(1) and construct an example to show th... In this note,we consider a class of Fourier integral operators with rough amplitudes and rough phases.When the index of symbols in some range,we prove that they are bounded on L^(1) and construct an example to show that this result is sharp in some cases.This result is a generalization of the corresponding theorems of Kenig-Staubach and Dos Santos Ferreira-Staubach. 展开更多
关键词 fourier integral operators AMPLITUDE PHASE
原文传递
L^(p)Boundedness of Fourier Integral Operators in the Class S_(1,0)
4
作者 Ing-Lung HWANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第1期37-98,共62页
We prove the following properties:(1)Let a∈Λ_(1,0,k,k’)^(m0)(R^(n)×R^(n))with m0=-1|1/p-1/2|(n-1),n≥2(1 n/p,k’>0;2≤p≤∞,k>n/2,k’>0 respectively).Suppose the phase function S is positively homogen... We prove the following properties:(1)Let a∈Λ_(1,0,k,k’)^(m0)(R^(n)×R^(n))with m0=-1|1/p-1/2|(n-1),n≥2(1 n/p,k’>0;2≤p≤∞,k>n/2,k’>0 respectively).Suppose the phase function S is positively homogeneous inξ-variables,non-degenerate and satisfies certain conditions.Then the Fourier integral operator T is L^(p)-bounded.Applying the method of(1),we can obtain the L^(p)-boundedness of the Fourier integral operator if(2)the symbol a∈Λ_(1,δ,k,k’)^(m0),0≤δ≤1,with m0,k,k’and S given as in(1).Also,the method of(1)gives:(3)a∈Λ_(1,δ,k,k’),0≤δ<1 and k,k’given as in(1),then the L^(p)-boundedness of the pseudo-differential operators holds,1<p<∞. 展开更多
关键词 fourier integral operator L^(p)-boundedness
原文传递
L^(2) Boundedness of the Fourier Integral Operator with Inhomogeneous Phase Functions
5
作者 Jia Wei DAI Jie Cheng CHEN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第8期1525-1546,共22页
In this paper,we investigate the L^(2) boundedness of the Fourier integral operator Tφ,a with smooth and rough symbols and phase functions which satisfy certain non-degeneracy conditions.In particular,if the symbol a... In this paper,we investigate the L^(2) boundedness of the Fourier integral operator Tφ,a with smooth and rough symbols and phase functions which satisfy certain non-degeneracy conditions.In particular,if the symbol a∈L∞Smρ,the phase functionφsatisfies some measure conditions and ∇kξφ(·,ξ)L∞≤C|ξ|−k for all k≥2,ξ≠0,and some∈>0,we obtain that Tφ,a is bounded on L^(2) if m<n2 min{ρ−1,−2}.This result is a generalization of a result of Kenig and Staubach on pseudo-differential operators and it improves a result of Dos Santos Ferreira and Staubach on Fourier integral operators.Moreover,the Fourier integral operator with rough symbols and inhomogeneous phase functions we study in this paper can be used to obtain the almost everywhere convergence of the fractional Schr odinger operator. 展开更多
关键词 fourier integral operator L^(2)boundedness inhomogeneous phase
原文传递
L^(p) Boundedness of Fourier Integral Operators in the Class S_(0,0)
6
作者 Ing-Lung HWANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2022年第9期1551-1596,共46页
We first prove the L~2-boundedness of a Fourier integral operator where it’s symbol a ∈S_(1/2,1/2)~0(R~n× R~n) and the phase function S is non-degenerate,satisfies certain conditions and may not be positively h... We first prove the L~2-boundedness of a Fourier integral operator where it’s symbol a ∈S_(1/2,1/2)~0(R~n× R~n) and the phase function S is non-degenerate,satisfies certain conditions and may not be positively homogeneous in ξ-variables.Then we use the above property,Paley’s inequality,covering lemma of Calderon and Zygmund etc.,and obtain the L~p-boundedness of Fourier integral operators if(1) the symbol a ∈ Λ_(k)^(m_(0)) and Supp a = E×R~n,with E a compact set of R~n(m_(0) =-|1/p-1/2|n,1<p≤2,k>n/2;2<p<∞,k>n/p),(2) the symbol a ∈ Λ_(0,k,k’)^(m_(0))(m_(0) =-|1/p-1/2|n,1<p ≤2,k>n/2,k’>n/p;2<p<∞,k>n/p,k’>n/2) with the phase function S(x,ξ) = xξ + h(x,ξ),x,ξ ∈ R~n non-degenerate,satisfying certain conditions and ?ξ h ∈ S_(1,0)~0(R~n× R~n),or(3) the symbol a ∈ Λ_(0,k,k’)^(m_(0)),the requirements for m_(0),k,k’ are the same as in(2),and ?_(ξ)h is not in S_(1,0)~0(R~n× R~n) but the phase function S is non-degenerate,satisfies certain conditions and is positively homogeneous in ξ-variables. 展开更多
关键词 fourier integral operator L^(p)-boundedness
原文传递
Improved Hrmander’s Theorem and New Methods for Oscillatory Integral Operators
7
作者 Sheng-Ming MA 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第11期1865-1874,共10页
This paper proves a theorem on the decay rate of the oscillatory integral operator with a degenerate C^∞ phase function, thus improving a classical theorem of HSrmander. The proof invokes two new methods to resolve t... This paper proves a theorem on the decay rate of the oscillatory integral operator with a degenerate C^∞ phase function, thus improving a classical theorem of HSrmander. The proof invokes two new methods to resolve the singularity of such kind of operators: a delicate method to decompose the operator and balance the L^2 norm estimates; and a method for resolution of singularity of the convolution type. The operator is decomposed into four major pieces instead of infinite dyadic pieces, which reveals that Cotlar's Lemma is not essential for the L^2 estimate of the operator. In the end the conclusion is further improved from the degenerate C^∞ phase function to the degenerate C^4 phase function. 展开更多
关键词 oscillatory integral operators decay rate fourier integral operators degenerate phase resolution of singularity
原文传递
An Explicit Formula for Szeg? Kernels on the Heisenberg Group
8
作者 Hendrik HERRMANN Chin Yu HSIAO Xiao Shan LI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第8期1225-1247,共23页
In this paper, we give an explicit formula for the Szego kernel for (0, q) forms on the Heisenberg group Hn+1.
关键词 Heisenberg group Szego kernels complex fourier integral operators
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部