期刊文献+
共找到342篇文章
< 1 2 18 >
每页显示 20 50 100
Cardiac arrhythmias detection in an ECG beat signal using fast fourier transform and artificial neural network 被引量:4
1
作者 Himanshu Gothwal Silky Kedawat Rajesh Kumar 《Journal of Biomedical Science and Engineering》 2011年第4期289-296,共8页
Cardiac Arrhythmias shows a condition of abnor-mal electrical activity in the heart which is a threat to humans. This paper presents a method to analyze electrocardiogram (ECG) signal, extract the fea-tures, for the c... Cardiac Arrhythmias shows a condition of abnor-mal electrical activity in the heart which is a threat to humans. This paper presents a method to analyze electrocardiogram (ECG) signal, extract the fea-tures, for the classification of heart beats according to different arrhythmias. Data were obtained from 40 records of the MIT-BIH arrhythmia database (only one lead). Cardiac arrhythmias which are found are Tachycardia, Bradycardia, Supraventricular Tachycardia, Incomplete Bundle Branch Block, Bundle Branch Block, Ventricular Tachycardia. A learning dataset for the neural network was obtained from a twenty records set which were manually classified using MIT-BIH Arrhythmia Database Directory and docu- mentation, taking advantage of the professional experience of a cardiologist. Fast Fourier transforms are used to identify the peaks in the ECG signal and then Neural Networks are applied to identify the diseases. Levenberg Marquardt Back-Propagation algorithm is used to train the network. The results obtained have better efficiency then the previously proposed methods. 展开更多
关键词 CARDIAC ARRHYTHMIAS neural network ELECTROCARDIOGRAM (ECG) Fast fourier Transform (FFT)
下载PDF
基于Fourier-TOuNN的鲁棒性拓扑优化设计
2
作者 高兴军 李隆华 李颖雄 《计算力学学报》 CAS CSCD 北大核心 2024年第2期241-247,共7页
为推广拓扑优化设计方法的工程应用,需要在设计过程中考虑结构鲁棒性以应对实际工程荷载的随机性。本文基于神经网络提出了鲁棒性结构拓扑优化设计的高效方法。该方法通过优化Fourier-TOuNN神经网络的权值更新描述结构拓扑的密度变量,... 为推广拓扑优化设计方法的工程应用,需要在设计过程中考虑结构鲁棒性以应对实际工程荷载的随机性。本文基于神经网络提出了鲁棒性结构拓扑优化设计的高效方法。该方法通过优化Fourier-TOuNN神经网络的权值更新描述结构拓扑的密度变量,并引入随机荷载下结构柔顺度平均值和标准差的加权总和作为目标函数,从而定义了随机荷载下的结构鲁棒性优化问题。利用神经网络的自动反向微分功能,实现了优化过程中灵敏度的直接求解。借助Fourier-TOuNN细部尺寸可控特性,可在结构中生成细小支撑以抵抗随机荷载。数值算例表明,采用本文提出的方法可以高效地获得鲁棒性稳健的优化设计结果。 展开更多
关键词 拓扑优化 鲁棒性设计 随机荷载 神经网络 傅里叶投影
下载PDF
Adaptive Iterative Learning Control for Nonlinear Time-delay Systems with Periodic Disturbances Using FSE-neural Network 被引量:4
3
作者 Chun-Li Zhang Jun-Min Li 《International Journal of Automation and computing》 EI 2011年第4期403-410,共8页
An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Rad... An adaptive iterative learning control scheme is presented for a class of strict-feedback nonlinear time-delay systems, with unknown nonlinearly parameterised and time-varying disturbed functions of known periods. Radial basis function neural network and Fourier series expansion (FSE) are combined into a new function approximator to model each suitable disturbed function in systems. The requirement of the traditional iterative learning control algorithm on the nonlinear functions (such as global Lipschitz condition) is relaxed. Furthermore, by using appropriate Lyapunov-Krasovskii functionals, all signs in the closed loop system are guaranteed to be semiglobally uniformly ultimately bounded, and the output of the system is proved to converge to the desired trajectory. A simulation example is provided to illustrate the effectiveness of the control scheme. 展开更多
关键词 Adaptive control iterative learning control (ILC) time-delay systems fourier series expansion-neural network periodic disturbances.
下载PDF
A Precise Algorithm for Non-Integer Harmonics Analysis Based on FFT and Neural Network 被引量:4
4
作者 WANGGong-bao MAWei-ming +1 位作者 XIANGDong-yang ZHANGwen-bo 《Wuhan University Journal of Natural Sciences》 CAS 2004年第4期454-458,共5页
By means of an arificial neural network (ANN) model, higher measurement accuracy of integer harmonics can be obtained. Combining the windowed fast Fourier transform (FFT) algorithm with the improved ANN model, we pres... By means of an arificial neural network (ANN) model, higher measurement accuracy of integer harmonics can be obtained. Combining the windowed fast Fourier transform (FFT) algorithm with the improved ANN model, we present a new precise algorithm for non-integer harmonics analysis. According to the result obtained from the Hanning-windowed FFT algorithm, we choose the initial values of orders of harmonics for the neural network. Through such processing, the time of iterations is shortened and the convergence rate of neural network is raised thereby. The simulation results show that close non-integer harmonics can be separated from a signal with higher accuracy and better real-time by using the algorithm presented in the paper. Key words fast Fourier transform (FFT) - artificial neural network (ANN) - Hanning-window - harmonics analysis CLC number TM 935 Foundation item: Supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of China (2001-182) and the Science Foundation of Naval University of Engineering(HGDJJ03001).Biography: WANG Gong-bao (1962-), male, Professor, research direction: artificial neural network, wavelet analysis and their applications to signal processing in electric power systems. 展开更多
关键词 fast fourier transform (FFT) artificial neural network (ANN) Hanning-window harmonics analysis
下载PDF
The Neural Network Model of Sinusoid Activation Transfer Function
5
作者 刘禹 王庆林 《Journal of Beijing Institute of Technology》 EI CAS 2004年第S1期21-25,共5页
A new type of neural network is described, which is basing on Fourier series, and the activation transfer function in its neuron model is sinusoid, ft can approximate to any function, which is continuum in every segme... A new type of neural network is described, which is basing on Fourier series, and the activation transfer function in its neuron model is sinusoid, ft can approximate to any function, which is continuum in every segment, with any precision with by layers only. We also provide the computer approach emulation results of different kinds of static function. 展开更多
关键词 SINUSOID fourier series neural network function approximation
下载PDF
Artificial neural network approach to assess selective flocculation on hematite and kaolinite 被引量:2
6
作者 Lopamudra Panda P.K.Banerjee +2 位作者 Surendra Kumar Biswal R.Venugopal N.R.Mandre 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第7期637-646,共10页
Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alt... Because of the current depletion of high grade reserves, beneficiation of low grade ore, tailings produced and tailings stored in tailing ponds is needed to fulfill the market demand. Selective flocculation is one alternative process that could be used for the beneficiation of ultra-fine material. This process has not been extensively used commercially because of its complex dependency on process parameters. In this paper, a selective flocculation process, using synthetic mixtures of hematite and kaolinite in different ratios, was attempted, and the ad-sorption mechanism was investigated by Fourier transform infrared (FTIR) spectroscopy. A three-layer artificial neural network (ANN) model (4?4?3) was used to predict the separation performance of the process in terms of grade, Fe recovery, and separation efficiency. The model values were in good agreement with experimental values. 展开更多
关键词 HEMATITE KAOLINITE FLOCCULATION artificial neural networks back propagation algorithm fourier transform infrared spectroscopy separation efficiency
下载PDF
New shape clustering method based on contour DFT descriptor and modified SOFM neural network 被引量:1
7
作者 刘威杨 徐向民 +1 位作者 梅剑寒 王为凯 《Journal of Beijing Institute of Technology》 EI CAS 2014年第1期89-95,共7页
A contour shape descriptor based on discrete Fourier transform (DFT) and a K-means al- gorithm modified self-organizing feature map (SOFM) neural network are established for shape clus- tering. The given shape is ... A contour shape descriptor based on discrete Fourier transform (DFT) and a K-means al- gorithm modified self-organizing feature map (SOFM) neural network are established for shape clus- tering. The given shape is first sampled uniformly in the polar coordinate. Then the discrete series is transformed to frequency domain and constructed to a shape characteristics vector. Firstly, sample set is roughly clustered using SOFM neural network to reduce the scale of samples. K-means algo- rithm is then applied to improve the performance of SOFM neural network and process the accurate clustering. K-means algorithm also increases the controllability of the clustering. The K-means algo- rithm modified SOFM neural network is used to cluster the shape characteristics vectors which is previously constructed. With leaf shapes as an example, the simulation results show that this method is effective to cluster the contour shapes. 展开更多
关键词 contour shape descriptor discrete fourier transform (DFT) serf-organizing featuremap (SOFM) neural network K-means algorithm
下载PDF
基于短时傅里叶变换和深度网络的模块化多电平换流器子模块IGBT开路故障诊断 被引量:1
8
作者 朱琴跃 于逸尘 +2 位作者 占岩文 李杰 华润恺 《电工技术学报》 EI CSCD 北大核心 2024年第12期3840-3854,共15页
针对现有模块化多电平换流器(MMC)子模块故障诊断过程中所需传感器较多、测量干扰较大等问题,提出一种基于深度学习的MMC子模块IGBT开路故障诊断方法。在对MMC子模块开路故障特征进行分析的基础上,利用短时傅里叶变换(STFT)提取桥臂电... 针对现有模块化多电平换流器(MMC)子模块故障诊断过程中所需传感器较多、测量干扰较大等问题,提出一种基于深度学习的MMC子模块IGBT开路故障诊断方法。在对MMC子模块开路故障特征进行分析的基础上,利用短时傅里叶变换(STFT)提取桥臂电压信号的谐波分量信息作为故障诊断所需的特征参数。将所得到的特征参数进行处理后构建故障诊断样本,在通过深度置信网络实现故障类型快速检测的基础上,依据不同故障类型,构建多个基于卷积神经网络的故障定位网络,进而实现开路故障的检测与定位。通过129电平的MMC系统仿真模型和降功率的MMC实验系统搭建,对该文所提方法进行了验证。仿真和实验结果表明,所提故障诊断方法可以在减少传感器数量的基础上实现子模块开路故障的诊断,提高系统的可靠性。 展开更多
关键词 模块化多电平换流器 开路故障诊断 短时傅里叶变换 卷积神经网络
下载PDF
融合CNN和ViT的声信号轴承故障诊断方法 被引量:4
9
作者 宁方立 王珂 郝明阳 《振动与冲击》 EI CSCD 北大核心 2024年第3期158-163,170,共7页
针对轴承故障诊断任务数据量少、故障信号非平稳等特点,提出一种短时傅里叶变换、卷积神经网络和视觉转换器相结合的轴承故障诊断方法。首先,利用短时傅里叶变换将原始声信号转换为包含时序信息和频率信息的时频图像。其次,将时频图像... 针对轴承故障诊断任务数据量少、故障信号非平稳等特点,提出一种短时傅里叶变换、卷积神经网络和视觉转换器相结合的轴承故障诊断方法。首先,利用短时傅里叶变换将原始声信号转换为包含时序信息和频率信息的时频图像。其次,将时频图像作为卷积神经网络的输入,用于隐式提取图像的深层特征,其输出作为视觉转换器的输入。视觉转换器用于提取信号的时间序列信息。并在输出层利用Softmax函数实现故障模式的识别。试验结果表明,该方法对于轴承故障诊断准确率较高。为了更好解释和优化提出的轴承故障诊断方法,利用t-分布领域嵌入算法对分类特征进行了可视化展示。 展开更多
关键词 短时傅里叶变换 卷积神经网络 视觉转换器 t-分布领域嵌入算法
下载PDF
基于时频图与视觉Transformer的滚动轴承智能故障诊断方法
10
作者 齐萌 王国强 +2 位作者 石念峰 李传锋 何一心 《轴承》 北大核心 2024年第10期115-123,共9页
基于循环神经网络的故障诊断方法在计算过程中难以保存间隔时间过长的信息且无法并行计算,在大型数据建模方面存在不足,为提高轴承故障诊断工作的效率及准确性,提出了一种基于短时傅里叶变换时频图与视觉Transformer(ViT)的轴承故障诊... 基于循环神经网络的故障诊断方法在计算过程中难以保存间隔时间过长的信息且无法并行计算,在大型数据建模方面存在不足,为提高轴承故障诊断工作的效率及准确性,提出了一种基于短时傅里叶变换时频图与视觉Transformer(ViT)的轴承故障诊断方法:通过短时傅里叶变换将原始振动信号转换为二维时频图像,再将时频图作为特征图输入ViT网络中进行训练,详细分析网络参数对故障诊断性能和计算复杂度的影响,构建最优模型结构,最终实现轴承的故障诊断。采用凯斯西储大学和江南大学轴承数据对模型进行验证,结果表明该模型可以有效结合短时傅里叶变换在处理时变信号方面的优势和ViT网络强大的图像分类能力,具有更高的诊断精度和更好的泛化性、通用性。 展开更多
关键词 滚动轴承 故障诊断 傅里叶变换 神经网络 深度学习
下载PDF
融合短时傅里叶变换和卷积神经网络的托辊故障诊断方法
11
作者 谢苗 孟庆爽 +3 位作者 李博 卢进南 李玉岐 杨志勇 《工程设计学报》 CSCD 北大核心 2024年第5期565-574,共10页
托辊故障已成为带式输送机运行中的常见问题。若不能及时诊断托辊故障,则将严重制约带式输送机的安全运行。为了解决上述问题,基于某矿带式输送机中间段托辊的实际运行工况,提出了一种融合短时傅里叶变换(short-time Fourier transform,... 托辊故障已成为带式输送机运行中的常见问题。若不能及时诊断托辊故障,则将严重制约带式输送机的安全运行。为了解决上述问题,基于某矿带式输送机中间段托辊的实际运行工况,提出了一种融合短时傅里叶变换(short-time Fourier transform,STFT)和卷积神经网络(convolutional neural network,CNN)的托辊故障诊断方法。首先,以分布式光纤为基础,对托辊在正常、轴承损坏及筒皮断裂工况下运行时的振动信号进行采集并作STFT处理,得到对应的时频图样本集,并将其分为训练集和测试集。然后,将训练集输入CNN模型以进行诊断模型训练,在训练过程中不断更新不同工况下托辊的运行状态特征。最后,将训练好的CNN模型应用于测试集,并输出托辊运行状态的识别结果。结果表明,所构建的CNN模型的识别准确率高达99.6%。基于所提出的故障诊断方法,在某矿上开展现场实验,以进一步验证CNN模型的识别准确率。实验结果表明,CNN模型对带式输送机中间段托辊的运行状态有较高的识别准确率,可达96.5%,与测试集上的识别准确率仅相差3.1个百分点,说明所提出的故障诊断方法具有一定的可靠性。后续可通过不断增加不同工况下托辊的运行数据来提高该故障诊断方法的鲁棒性,这可为煤矿企业有效诊断托辊故障提供有力的理论基础。 展开更多
关键词 托辊 故障诊断 分布式光纤 短时傅里叶变换 卷积神经网络
下载PDF
基于多通道卷积神经网络的柴油机复合故障诊断
12
作者 王银 赵建华 +1 位作者 帅长庚 廖玉诚 《海军工程大学学报》 CAS 北大核心 2024年第4期8-13,共6页
针对复合故障诊断精度较低的问题,开展了柴油机多故障模拟实验,构建了基于AlexNet改进的多通道二维卷积神经网络模型,采用短时傅里叶变换将一维振动信号转换为二维时频图,导入构建的模型进行训练,实现特征自适应提取的故障诊断。将诊断... 针对复合故障诊断精度较低的问题,开展了柴油机多故障模拟实验,构建了基于AlexNet改进的多通道二维卷积神经网络模型,采用短时傅里叶变换将一维振动信号转换为二维时频图,导入构建的模型进行训练,实现特征自适应提取的故障诊断。将诊断结果与单通道卷积神经网络诊断结果比较发现:单通道卷积神经网络诊断只有在测点设置靠近故障源的情况下才能够获得较高的故障诊断准确率,否则诊断准确率明显降低,且复合故障诊断精度较低;多通道卷积神经网络的单故障和复合故障诊断精度均得到了提升,其中复合故障诊断精度提升了11.4%。 展开更多
关键词 柴油机 复合故障 多通道卷积神经网络 短时傅里叶变换
下载PDF
基于傅里叶描述子的手势识别方法
13
作者 邢益良 雷华军 《工业控制计算机》 2024年第5期77-79,82,共4页
手势识别是计算机视觉人机交互应用领域关键技术,手势轮廓携带有手势重要特征,准确捕获手势轮廓对提高手势识别具有重要意义。针对手掌轮廓特征提取困难和手势识别率低问题,提出了基于傅里叶描述子的手势识别方法,按照候选窗口最大轮廓... 手势识别是计算机视觉人机交互应用领域关键技术,手势轮廓携带有手势重要特征,准确捕获手势轮廓对提高手势识别具有重要意义。针对手掌轮廓特征提取困难和手势识别率低问题,提出了基于傅里叶描述子的手势识别方法,按照候选窗口最大轮廓傅里叶描述子匹配度和置信度分割出手掌区域;跟踪手掌轮廓计算其傅里叶描述子得到手势轮廓特征值;将16个手势轮廓特征值作为BP人工神经网络的输入,利用BP人工神经网络识别手势。实验表明,该方法能有效捕获手势轮廓和识别19种手势,具有识别率高、性能优良和鲁棒性好等优点。 展开更多
关键词 手势识别 傅里叶描述子 手势轮廓 人工神经网络 候选窗口
下载PDF
基于卷积和长短期记忆网络的地浸开采铀浓度预测研究
14
作者 贾明滔 谭笑 +2 位作者 苏学斌 陈梅芳 鲁芳 《铀矿地质》 CAS CSCD 2024年第3期578-586,共9页
文章通过集成经验模态分解(Empirical Mode Decomposition,EMD)、卷积神经网络(Convolutional Neural Networks,CNN)、长短期记忆网络(Long Short-Term Memory,LSTM)、傅里叶变换,提出了一种新型地浸单元浸出液铀浓度预测方法。该方法... 文章通过集成经验模态分解(Empirical Mode Decomposition,EMD)、卷积神经网络(Convolutional Neural Networks,CNN)、长短期记忆网络(Long Short-Term Memory,LSTM)、傅里叶变换,提出了一种新型地浸单元浸出液铀浓度预测方法。该方法将浸出液铀浓度监测值时间序列使用EMD进行分解,分解为趋势项、周期项和随机项。通过构建CNN+LSTM网络,并结合傅里叶变换和多项式拟合对铀浓度趋势项、周期项和随机项进行预测,3者预测之和作为铀浓度预测结果。实证结果表明:EMD能够有效分解铀浓度时间序列,模型拟合度比未进行EMD分解的模型提升超50%;基于EMD、CNN+LSTM和傅里叶变换的集成方法预测精度良好,预测的平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)为0.348,与LSTM、反向传播(Back Propagation,BP)和门控循环网络(Gate Recurrent Unit,GRU)等模型相比最高提升超80%。文章提出的集成方法能够准确预测浸采单元铀浓度变化,解决了原有方法和模型无法对非线性、非平稳铀浓度序列进行准确预测的问题,从而为地浸矿山生产规划提供技术支持,并有助于提升中国铀矿山的数字化、信息化程度。 展开更多
关键词 铀浓度预测 经验模态分解 卷积神经网络 长短期记忆 傅里叶变换
下载PDF
基于深度学习的电机故障诊断
15
作者 王晓兰 马泽娟 王惠中 《计算机与数字工程》 2024年第5期1536-1540,共5页
故障诊断在保证电机的稳定运行中占据着非常重要的地位,因此,故障诊断在当前的研究中是一个热点。该研究利用短时傅里叶变换把一维的振动信号转换成二维的时频图,进而解决电机轴承的振动信号的非线性和不稳定性问题,并且作为卷积神经网... 故障诊断在保证电机的稳定运行中占据着非常重要的地位,因此,故障诊断在当前的研究中是一个热点。该研究利用短时傅里叶变换把一维的振动信号转换成二维的时频图,进而解决电机轴承的振动信号的非线性和不稳定性问题,并且作为卷积神经网络的输入,通过对故障特征信号的直接提取,来形成样本数据集,通过卷积神经网络与softmax多分类器来建立故障诊断模型,在Python中验证该算法优化的准确性,证明了该算法可以提高电机故障诊断的准确率。 展开更多
关键词 卷积神经网络 softmax多分类器 故障诊断 短时傅里叶变换
下载PDF
基于卷积神经网络融合的彩色傅里叶叠层显微重建
16
作者 李杰 王浩明 《长春大学学报》 2024年第2期1-7,共7页
针对彩色傅立叶叠层显微重建存在图像获取时间长、采集低分辨率图像数量多等问题,采用基于卷积神经网络的图像融合方法来实现彩色傅立叶叠层显微重建。该方法基于图像融合原理,将单通道低分辨率图像重建的灰度高分辨率图像与相同视场下... 针对彩色傅立叶叠层显微重建存在图像获取时间长、采集低分辨率图像数量多等问题,采用基于卷积神经网络的图像融合方法来实现彩色傅立叶叠层显微重建。该方法基于图像融合原理,将单通道低分辨率图像重建的灰度高分辨率图像与相同视场下的彩色低分辨率图像融合,成功地重建彩色FPM图像。在保证图像恢复质量的同时减少了2/3的采集时间。实验结果表明,所提算法可以获得色彩不失真的彩色FPM图像,定量评价指标方均根误差小于0.01,结构相似性参数大于0.89。 展开更多
关键词 傅里叶叠层显微重建 彩色图像重建 图像融合 卷积神经网络
下载PDF
Fourier三角基神经元网络的权值直接确定法 被引量:7
17
作者 张雨浓 旷章辉 +1 位作者 肖秀春 陈柏桃 《计算机工程与科学》 CSCD 北大核心 2009年第5期112-115,共4页
根据Fourier变换理论,本文构造出一类基于三角正交基的前向神经网络模型。该模型由输入层、隐层、输出层构成,其输入层和输出层采用线性激励函数,以一组三角正交基为其隐层神经元的激励函数。依据误差回传算法(即BP算法),推导了权值修... 根据Fourier变换理论,本文构造出一类基于三角正交基的前向神经网络模型。该模型由输入层、隐层、输出层构成,其输入层和输出层采用线性激励函数,以一组三角正交基为其隐层神经元的激励函数。依据误差回传算法(即BP算法),推导了权值修正的迭代公式。针对BP迭代法收敛速度慢、逼近目标函数精度较低的缺点,进一步提出基于伪逆的权值直接确定法,该方法避免了权值反复迭代的冗长过程。仿真和预测结果表明,该方法比传统的BP迭代法具有更快的计算速度和更高的仿真与测试精度。 展开更多
关键词 三角正交基函数 fourier三角基神经元网络 权值修正 直接确定法
下载PDF
基于深度残差傅里叶神经算子方法压制地震多次波
18
作者 刘继伟 胡天跃 +5 位作者 戴晓峰 郑晓东 黄建东 焦梦瑶 于珍珍 隋京坤 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第8期3089-3108,共20页
多次波是一种较为严重影响地震成像的干扰波,如何有效压制多次波是需要关注的地震资料处理关键问题之一.本文基于傅里叶神经算子(FNO)和残差网络(ResNet),提出了基于深度残差傅里叶神经算子(DRFNO)网络的多次波压制方法.DRFNO是一种弱... 多次波是一种较为严重影响地震成像的干扰波,如何有效压制多次波是需要关注的地震资料处理关键问题之一.本文基于傅里叶神经算子(FNO)和残差网络(ResNet),提出了基于深度残差傅里叶神经算子(DRFNO)网络的多次波压制方法.DRFNO是一种弱约束模型+数据驱动的人工智能算法,包含一次波和多次波的全波场炮集为输入,其中真实一次波炮集为标签训练网络,输出为压制多次波后的一次波炮集.DRFNO的网络结构中考虑了地震波场的数据特点,结合波动方程正演模拟的物理机理,约束网络训练过程.基于传统机器学习中的激活函数设置方法,该方法通过一个用于地震数据样本与标签预处理的激活函数(SDAF),克服地震炮集数据中因同相轴能量差异导致神经网络无法训练的问题.采用两套层状介质模型和Sigsbee2B复杂模型的模拟地震数据验证了DRFNO方法多次波压制处理的有效性,抗噪性和泛化能力.最后,通过一套实际地震数据实例表明本文提出的DRFNO方法应用于压制实际复杂地震波场中多次波的良好效果. 展开更多
关键词 多次波压制 傅里叶神经算法(FNO) 残差网络(ResNet) 深度残差傅里叶神经算子(DRFNO)网络 地震数据激活函数(SDAF)
下载PDF
忆阻Fourier神经网络在图像复原中的应用 被引量:4
19
作者 王丽丹 段书凯 段美涛 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期1-6,共6页
将传统Fourier神经网络与忆阻器相结合,用忆阻器做突触,构建新型的忆阻Fourier神经网络.推导忆导变化与权值更新的关系,提出忆阻突触权值更新规则,构建单输入忆阻Fourier神经网络,提出忆阻BP算法对模糊二值图像和灰度进行处理.Matlab仿... 将传统Fourier神经网络与忆阻器相结合,用忆阻器做突触,构建新型的忆阻Fourier神经网络.推导忆导变化与权值更新的关系,提出忆阻突触权值更新规则,构建单输入忆阻Fourier神经网络,提出忆阻BP算法对模糊二值图像和灰度进行处理.Matlab仿真实验表明该算法可以有效实现图像复原,提高图像清晰度.忆阻Fourier神经网络有望用于解决复杂的图像处理问题. 展开更多
关键词 忆阻器 傅立叶神经网络 BP算法 图像复原
下载PDF
复指数Fourier神经元网络隐神经元衍生算法 被引量:9
20
作者 张雨浓 曾庆淡 +2 位作者 肖秀春 姜孝华 邹阿金 《计算机应用》 CSCD 北大核心 2008年第10期2503-2506,共4页
以平方可积空间上的复指数Fourier级数作为激励函数构造了新型Fourier神经元网络,并推导出采用加号逆表示的网络权值直接确定公式,克服了传统BP神经网络收敛速度慢、易陷于局部极小点、迭代学习易发生振荡等缺陷。并在此基础上构造了隐... 以平方可积空间上的复指数Fourier级数作为激励函数构造了新型Fourier神经元网络,并推导出采用加号逆表示的网络权值直接确定公式,克服了传统BP神经网络收敛速度慢、易陷于局部极小点、迭代学习易发生振荡等缺陷。并在此基础上构造了隐神经元衍生算法,克服了传统BP神经网络难以确定最优网络拓扑结构的缺点。理论分析及仿真实验表明,该复指数Fourier神经元网络能够一步计算网络最优权值且能自适应调整网络结构,对随机加性噪声具有抑制作用,并能高精度逼近非连续函数。 展开更多
关键词 fourier级数 前向神经网络 权值直接确定 衍生算法 复指数
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部