Eccentric photorefraction usually is used as early eyesight diagnostic test of infants and small children. Unlike currently approved geometrical optical model of eccentric photorefractometer, the crescent formation an...Eccentric photorefraction usually is used as early eyesight diagnostic test of infants and small children. Unlike currently approved geometrical optical model of eccentric photorefractometer, the crescent formation and the light-intensity distribution in the pupil image of a myopic eye are analyzed by Fourier optics with the assumption of an isotropic scattering retina. In the case of little circular light source and rectangular slit, the simulation results of different myopic diopters are obtained by geometrical optical theory and Fourier optics respectively. It is found that the simulation results by Fourier optics are similar as those obtained by geometrical optics, and all simulations are almost corresponding to the experimental result. The result demonstrates that the new method presented here is feasible.展开更多
An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and...An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and the OTF of an imaging system with unknown aberrations simultaneously. This model overcomes the difficult problem of OTF estimation that the previous IFP faces. The effectiveness of this algorithm is demonstrated by numerical simulations, and the superior reconstruction is presented. We believe that the reported algorithm can extend the original IFP for more complex conditions and may provide a solution by using structured light for characterization of optical systems' aberrations.展开更多
We study entangling and disentangling functions of optical Fourier multiport devices in which input-output relation for the creation and annihilation operators is given by a finite Fourier transform. It is shown that ...We study entangling and disentangling functions of optical Fourier multiport devices in which input-output relation for the creation and annihilation operators is given by a finite Fourier transform. It is shown that these Fourier multiport devices can act as entanglement converters which can not only create entanglement from an unentangled state at the input but also destroy entanglement in an entangled state at the input. Creation and destruction of two-mode and three-mode entangled coherent states (ECSs) are investigated in detail. The creation and destruction of Bell-type two-mode ECS, GHZ-type and W-type three-mode ECSs are indicated explicitly through using Fourier four-port and six-port devices, respectively.展开更多
The segmented mirror telescope is widely used.The aberrations of segmented mirror systems are different from single mirror systems.This paper uses the Fourier optics theory to analyse the Zernike aberrations of segmen...The segmented mirror telescope is widely used.The aberrations of segmented mirror systems are different from single mirror systems.This paper uses the Fourier optics theory to analyse the Zernike aberrations of segmented mirror systems.It concludes that the Zernike aberrations of segmented mirror systems obey the linearity theorem.The design of a segmented space telescope and segmented schemes are discussed,and its optical model is constructed. The computer simulation experiment is performed with this optical model to verify the suppositions. The experimental results confirm the correctness of the model.展开更多
The angular spectrum method(ASM) is a popular numerical approach for scalar diffraction calculations. However,traditional ASM has an inherent problem in that nonuniform sampling is precluded. In an attempt to addres...The angular spectrum method(ASM) is a popular numerical approach for scalar diffraction calculations. However,traditional ASM has an inherent problem in that nonuniform sampling is precluded. In an attempt to address this limitation,an improved trigonometric interpolation ASM(TIASM) is proposed, in which the fast Fourier transform(FFT) is replaced by a trigonometric interpolation. The results show that TIASM is more suitable to situations in which the source field has a simple and strong frequency contrast, irrespective of whether the original phase distribution is a plane wave or a Fresnel zone plate phase distribution.展开更多
Algorithms for reconstruction of linear and circular birefringence-dichroism of optically thin anisotropic biological layers are presented.The technique of Jones matrix tomography of poly-crystalline films of biologic...Algorithms for reconstruction of linear and circular birefringence-dichroism of optically thin anisotropic biological layers are presented.The technique of Jones matrix tomography of poly-crystalline films of biological fuids of various human organs has been developed and experimentally tested.The coordinate distributions of phase and amplitude anisotropy of bile films and synovial fuid taken from the knee joint are determined and statistically analyzed.Criteria(statistical moments of 3rd and 4th orders)of differential diagnostics of early stages of cholelithiasis and septic arthritis of the knee joint with excellent balanced accuracy were determined.Data on the diagnostic fficiency of the Jones matrix tomography method for polyerystalline plasma(liver disease),urine(albuminuria)and cytological smears(cervical cancer)are presented.展开更多
The angular method(AS)cannot be used in long-distance propagation because it produces severe numerical errors due to the sampling problem in the transfer function.Two ways can solve this problem in AS for long-distanc...The angular method(AS)cannot be used in long-distance propagation because it produces severe numerical errors due to the sampling problem in the transfer function.Two ways can solve this problem in AS for long-distance propagation.One is zero-padding to make sure that the calculation window is wide enough,but it leads to a huge calculation burden.The other is a method called band-limited angular spectrum(BLAS),in which the transfer function is truncated and results in that the calculation accuracy decreases as the propagation distance increases.In this paper,a new method called modified scaling angular spectrum(MSAS)to solve the problem for long-distance propagation is proposed.A scaling factor is introduced in MSAS so that the sampling interval of the input plane can be adjusted arbitrarily unlike AS whose sampling interval is restricted by the detector’s pixel size.The sampling interval of the input plane is larger than the detector’s pixel size so the size of calculation window suitable for long-distance field propagation in the input plane is smaller than the size of the calculation window required by the zero-padding.Therefore,the method reduces the calculation redundancy and improves the calculation speed.The results from simulations and experiments show that MSAS has a good signal-to-noise ratio(SNR),and the calculation accuracy of MSAS is better than BLAS.展开更多
The nonlinear properties of Tris(acetylacetonato) Manganese(III) are used to manipulate the spatial frequencies at the Fourier plane using 4f-z scan. The technique is a simple self-adaptive all-optical system, which p...The nonlinear properties of Tris(acetylacetonato) Manganese(III) are used to manipulate the spatial frequencies at the Fourier plane using 4f-z scan. The technique is a simple self-adaptive all-optical system, which performs image processing and nonlinear optical measurements at the same time. Preferred spatial frequencies can be selected by shifting the nonlinear sample through the focus. Edge enhancement was demonstrated by filtering of low frequency with the nonlinear material at the Fourier plane.展开更多
The Fourier transform(FT),a cornerstone of optical processing,enables rapid evaluation of fundamental mathematical operations,such as derivatives and integrals.Conventionally,a converging lens performs an optical FT i...The Fourier transform(FT),a cornerstone of optical processing,enables rapid evaluation of fundamental mathematical operations,such as derivatives and integrals.Conventionally,a converging lens performs an optical FT in free space when light passes through it.The speed of the transformation is limited by the thickness and the focal length of the lens.By using the wave nature of surface plasmon polaritons(SPPs),here we demonstrate that the FT can be implemented in a planar configuration with a minimal propagation distance of around 10 mm,resulting in an increase of speed by four to five orders of magnitude.The photonic FT was tested by synthesizing intricate SPP waves with their Fourier components.The reduced dimensionality in the minuscule device allows the future development of an ultrafast on-chip photonic information processing platform for large-scale optical computing.展开更多
Based on the principle that a rectangular function can be expanded into a sum of complex Gaussian functions with finite numbers, propagation characteristics of a Gaussian beam or a plane wave passing through apertured...Based on the principle that a rectangular function can be expanded into a sum of complex Gaussian functions with finite numbers, propagation characteristics of a Gaussian beam or a plane wave passing through apertured fractional Fourier transforming systems are analyzed and corresponding analytical formulae are obtained.Analytical formulae in different fractional orders are numerically simulated and compared with the diffraction integral formulae,the applicable range and exactness of analytical formulae are confirmed. It is shown that the calculating speed of using the obtained approximate analytical formulae,is several hundred times faster than that of using diffraction integral directly.Meanwhile,by using analytical formulae the effect of different aperture sizes on Gaussian beam propagation characteristics is numerically simulated, it is shown that the diffraction effect can be neglected when the aperture size is 5 times larger than the beam waist size.展开更多
By means of experimental technique of optical fractional Fourier transform, we have determined the Hurst exponent of a regular self-affine fractal pattern to demonstrate the feasibility of this approach. Then we exten...By means of experimental technique of optical fractional Fourier transform, we have determined the Hurst exponent of a regular self-affine fractal pattern to demonstrate the feasibility of this approach. Then we extend this method to determine the Hurst exponents of some irregular self-affine fractal patterns. Experimental results show that optical fractional Fourier transform is a practical method for analyzing the self-affine fractal patterns.展开更多
In this paper, we propose a method of digital in-line holography of particle. A diverging spherical beam is used for illumination in recording hologram, the complex amplitude distribution generated by particle field a...In this paper, we propose a method of digital in-line holography of particle. A diverging spherical beam is used for illumination in recording hologram, the complex amplitude distribution generated by particle field at a single plane located in the Presnel diffraction region is recorded by CCD, and a plane beam for reconstructing hologram, then, the magnified image can be obtained by numerical reconstruction in computer. This procedure can be interpreted by Fourier optical theory and the theoretical analysis have been done in detail, the experimental results, the air freshener being subject, are also given.展开更多
Based on the split-step Fourier method and small signal analysis, an improved analytical solution which describes the cross-phase modulation (XPM) intensity is derived. It can suppress the spurious XPM intensity modul...Based on the split-step Fourier method and small signal analysis, an improved analytical solution which describes the cross-phase modulation (XPM) intensity is derived. It can suppress the spurious XPM intensity modulation efficiently in the whole transmission fiber. Thus it is more coincidence with the practical result. Furthermore, it is convenient, because it is independent of channel separation and the dispersion and nonlinear effects interact through the XPM intensity. A criterion of select the step size is described as the derived XPM intensity modulation being taken into account. It is non-uniform distribution and is the function of average signal power <P(z)> (or z). Compared with the conventional split-step method, the simulation accuracy is improved when the step size is determined by the improved XPM intensity.展开更多
We propose and demonstrate a reconfigurable and single-shot incoherent optical signal processing system for chirped microwave signal compression, using a programmable optical filter and a multiwavelength laser(MWL). T...We propose and demonstrate a reconfigurable and single-shot incoherent optical signal processing system for chirped microwave signal compression, using a programmable optical filter and a multiwavelength laser(MWL). The system is implemented by temporally modulating a specially shaped MWL followed by a suitable linear dispersive medium. A microwave dispersion value up to 1.33 ns/GHz over several GHz bandwidth is achieved based on this approach. Here we demonstrate a singleshot compression for different linearly chirped microwave signals over several GHz bandwidth. In addition, the robustness of the proposed system when input RF signals are largely distorted is also discussed.展开更多
基金This work was supported by the National Basic Research Program of China (No. 2005CB724304) the Optical Science and Technology Program of Science and Technology Committee of Shanghai (No. 046105014)the Youth Program of Zhaoqing University (No. 0303).
文摘Eccentric photorefraction usually is used as early eyesight diagnostic test of infants and small children. Unlike currently approved geometrical optical model of eccentric photorefractometer, the crescent formation and the light-intensity distribution in the pupil image of a myopic eye are analyzed by Fourier optics with the assumption of an isotropic scattering retina. In the case of little circular light source and rectangular slit, the simulation results of different myopic diopters are obtained by geometrical optical theory and Fourier optics respectively. It is found that the simulation results by Fourier optics are similar as those obtained by geometrical optics, and all simulations are almost corresponding to the experimental result. The result demonstrates that the new method presented here is feasible.
基金Supported by the National Natural Science Foundation of China under Grant No 61205144the Research Project of National University of Defense Technology under Grant No JC13-07-01the Key Laboratory of High Power Laser and Physics of Chinese Academy of Sciences
文摘An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and the OTF of an imaging system with unknown aberrations simultaneously. This model overcomes the difficult problem of OTF estimation that the previous IFP faces. The effectiveness of this algorithm is demonstrated by numerical simulations, and the superior reconstruction is presented. We believe that the reported algorithm can extend the original IFP for more complex conditions and may provide a solution by using structured light for characterization of optical systems' aberrations.
基金Supported by National Natural Science Foundation of China under Grant Nos. 10325523 and 10775048the National Fundamental Research Program of China under Grant No. 2007CB925204the Key Project of Education Department of Hunan Province under Grant No. 08w012
文摘We study entangling and disentangling functions of optical Fourier multiport devices in which input-output relation for the creation and annihilation operators is given by a finite Fourier transform. It is shown that these Fourier multiport devices can act as entanglement converters which can not only create entanglement from an unentangled state at the input but also destroy entanglement in an entangled state at the input. Creation and destruction of two-mode and three-mode entangled coherent states (ECSs) are investigated in detail. The creation and destruction of Bell-type two-mode ECS, GHZ-type and W-type three-mode ECSs are indicated explicitly through using Fourier four-port and six-port devices, respectively.
基金Project supported by the National High Technology Research and Development Program of China (Grant No 2006AA01Z339)
文摘The segmented mirror telescope is widely used.The aberrations of segmented mirror systems are different from single mirror systems.This paper uses the Fourier optics theory to analyse the Zernike aberrations of segmented mirror systems.It concludes that the Zernike aberrations of segmented mirror systems obey the linearity theorem.The design of a segmented space telescope and segmented schemes are discussed,and its optical model is constructed. The computer simulation experiment is performed with this optical model to verify the suppositions. The experimental results confirm the correctness of the model.
基金Project supported by Chinese National Research Fund(Grant No.9140A02010514DZ01019)
文摘The angular spectrum method(ASM) is a popular numerical approach for scalar diffraction calculations. However,traditional ASM has an inherent problem in that nonuniform sampling is precluded. In an attempt to address this limitation,an improved trigonometric interpolation ASM(TIASM) is proposed, in which the fast Fourier transform(FFT) is replaced by a trigonometric interpolation. The results show that TIASM is more suitable to situations in which the source field has a simple and strong frequency contrast, irrespective of whether the original phase distribution is a plane wave or a Fresnel zone plate phase distribution.
基金support of the Academy of Finland(grant projects:311698)support of INFOTECH grant project,as well as the MEPhI Academic Excellence Project(Contract No.02.a03.21.0005)the National Research Tomsk State University Academic D.I.Mendeleev Fund Program.
文摘Algorithms for reconstruction of linear and circular birefringence-dichroism of optically thin anisotropic biological layers are presented.The technique of Jones matrix tomography of poly-crystalline films of biological fuids of various human organs has been developed and experimentally tested.The coordinate distributions of phase and amplitude anisotropy of bile films and synovial fuid taken from the knee joint are determined and statistically analyzed.Criteria(statistical moments of 3rd and 4th orders)of differential diagnostics of early stages of cholelithiasis and septic arthritis of the knee joint with excellent balanced accuracy were determined.Data on the diagnostic fficiency of the Jones matrix tomography method for polyerystalline plasma(liver disease),urine(albuminuria)and cytological smears(cervical cancer)are presented.
基金Project supported by the National Natural Science Foundation of China(Grant No.61705254)the Key Research and Development Program of Shaanxi Province of China(Grant No.2020GY-114).
文摘The angular method(AS)cannot be used in long-distance propagation because it produces severe numerical errors due to the sampling problem in the transfer function.Two ways can solve this problem in AS for long-distance propagation.One is zero-padding to make sure that the calculation window is wide enough,but it leads to a huge calculation burden.The other is a method called band-limited angular spectrum(BLAS),in which the transfer function is truncated and results in that the calculation accuracy decreases as the propagation distance increases.In this paper,a new method called modified scaling angular spectrum(MSAS)to solve the problem for long-distance propagation is proposed.A scaling factor is introduced in MSAS so that the sampling interval of the input plane can be adjusted arbitrarily unlike AS whose sampling interval is restricted by the detector’s pixel size.The sampling interval of the input plane is larger than the detector’s pixel size so the size of calculation window suitable for long-distance field propagation in the input plane is smaller than the size of the calculation window required by the zero-padding.Therefore,the method reduces the calculation redundancy and improves the calculation speed.The results from simulations and experiments show that MSAS has a good signal-to-noise ratio(SNR),and the calculation accuracy of MSAS is better than BLAS.
文摘The nonlinear properties of Tris(acetylacetonato) Manganese(III) are used to manipulate the spatial frequencies at the Fourier plane using 4f-z scan. The technique is a simple self-adaptive all-optical system, which performs image processing and nonlinear optical measurements at the same time. Preferred spatial frequencies can be selected by shifting the nonlinear sample through the focus. Edge enhancement was demonstrated by filtering of low frequency with the nonlinear material at the Fourier plane.
基金supported by the National Natural Science Foundation of China 61427819the Ministry of Science and Technology of China under National Basic Research Program of China(973)grant(No.2015CB352004)+4 种基金the Discovery Early Career Researcher Award funded by the Australian Research Council under projects DE120102352 and DE130100954,respectivelysupport from the La Trobe Research Focus Area(RFA)of Understanding Diseases,theMelbourne Collaboration Grant and the Interdisciplinary Seed Fund through theMelbourne Materials Institute(MMI)support from the Defence Science Institute,Australiathe Advanced Optics in Engineering Programme with Grant number 122-360-0009 from the Agency for Science,Technology and Research(A*STAR)and Singapore Ministry of Education Academic Research Fund Tier 3 with Grant number MOE2011-T3-1-005the fellowship support from the A*STAR.
文摘The Fourier transform(FT),a cornerstone of optical processing,enables rapid evaluation of fundamental mathematical operations,such as derivatives and integrals.Conventionally,a converging lens performs an optical FT in free space when light passes through it.The speed of the transformation is limited by the thickness and the focal length of the lens.By using the wave nature of surface plasmon polaritons(SPPs),here we demonstrate that the FT can be implemented in a planar configuration with a minimal propagation distance of around 10 mm,resulting in an increase of speed by four to five orders of magnitude.The photonic FT was tested by synthesizing intricate SPP waves with their Fourier components.The reduced dimensionality in the minuscule device allows the future development of an ultrafast on-chip photonic information processing platform for large-scale optical computing.
基金This work was supported by the National Natural Science Foundation of China (NSAF United Foundation) under Grant No. 10276034 and 60276035.
文摘Based on the principle that a rectangular function can be expanded into a sum of complex Gaussian functions with finite numbers, propagation characteristics of a Gaussian beam or a plane wave passing through apertured fractional Fourier transforming systems are analyzed and corresponding analytical formulae are obtained.Analytical formulae in different fractional orders are numerically simulated and compared with the diffraction integral formulae,the applicable range and exactness of analytical formulae are confirmed. It is shown that the calculating speed of using the obtained approximate analytical formulae,is several hundred times faster than that of using diffraction integral directly.Meanwhile,by using analytical formulae the effect of different aperture sizes on Gaussian beam propagation characteristics is numerically simulated, it is shown that the diffraction effect can be neglected when the aperture size is 5 times larger than the beam waist size.
文摘By means of experimental technique of optical fractional Fourier transform, we have determined the Hurst exponent of a regular self-affine fractal pattern to demonstrate the feasibility of this approach. Then we extend this method to determine the Hurst exponents of some irregular self-affine fractal patterns. Experimental results show that optical fractional Fourier transform is a practical method for analyzing the self-affine fractal patterns.
基金This work was supported by the National Natural Sci-ence Foundation of China(No.60077028), the Natural Science Fund of Tianjin Opto-Electronic Sci.&Tec.Center and the Lab of Opto- Electronic lnformation Sci.& Tec. Ministry of Education Ch
文摘In this paper, we propose a method of digital in-line holography of particle. A diverging spherical beam is used for illumination in recording hologram, the complex amplitude distribution generated by particle field at a single plane located in the Presnel diffraction region is recorded by CCD, and a plane beam for reconstructing hologram, then, the magnified image can be obtained by numerical reconstruction in computer. This procedure can be interpreted by Fourier optical theory and the theoretical analysis have been done in detail, the experimental results, the air freshener being subject, are also given.
基金This work was supported by the National Natural Science Foundation of China (No. 60278001)the Science & Technology Cooperation Foundation of Nakai University, the Ministry of Education.
文摘Based on the split-step Fourier method and small signal analysis, an improved analytical solution which describes the cross-phase modulation (XPM) intensity is derived. It can suppress the spurious XPM intensity modulation efficiently in the whole transmission fiber. Thus it is more coincidence with the practical result. Furthermore, it is convenient, because it is independent of channel separation and the dispersion and nonlinear effects interact through the XPM intensity. A criterion of select the step size is described as the derived XPM intensity modulation being taken into account. It is non-uniform distribution and is the function of average signal power <P(z)> (or z). Compared with the conventional split-step method, the simulation accuracy is improved when the step size is determined by the improved XPM intensity.
基金supported by research grants from NSERC(Canada)agenciesalso partly supported by the National Natural Science Foundation of China(61522509,61377002 and 61090391)+2 种基金Beijing Natural Science Foundation(4152052)the National High-Tech Research and Development Program of China(2015AA017102)M.L.was supported partly by the Thousand Young Talent Program
文摘We propose and demonstrate a reconfigurable and single-shot incoherent optical signal processing system for chirped microwave signal compression, using a programmable optical filter and a multiwavelength laser(MWL). The system is implemented by temporally modulating a specially shaped MWL followed by a suitable linear dispersive medium. A microwave dispersion value up to 1.33 ns/GHz over several GHz bandwidth is achieved based on this approach. Here we demonstrate a singleshot compression for different linearly chirped microwave signals over several GHz bandwidth. In addition, the robustness of the proposed system when input RF signals are largely distorted is also discussed.