Fourier transform infrared (FTIR) spectroscopy was used to study diseased leaves in broad bean. Results showed that the infrared spectra of different broad bean diseased leaves were similar, which were mainly made u...Fourier transform infrared (FTIR) spectroscopy was used to study diseased leaves in broad bean. Results showed that the infrared spectra of different broad bean diseased leaves were similar, which were mainly made up of the vibrational absorption bands of protein,lipid and polysaccharide.There were minor differences in-cluding the spectral peak position, peak shape and the absorption intensity in the range of 1 800-1 300 cm-1. There were obvious differences among their second derivative spectra in the range of 1 800-1 300 cm-1. After the procedure of the Fourier self-deconvolution and curve fitting of health bean leaves and broad bean diseased leaves in the range of 1 700-1 500 cm-1, three sub-peaks were obtained at 1 550 cm-1 (protein amide Ⅱ band), 1 605 cm-1 (lignin) and 1 650 cm-1 (protein amide I band).The ratios of relative areas of the bands of amide Ⅱ, lignin, and amide I were 38.86%, 28.68% and 32.47% in the spectra of healthy leaves, respec-tively. It was distinguished from the diseased leaves (chocolate spot leaf: 15.42%, 42.98% and 41.61%, ring spot leaf:32.39%, 35.63% and 31.98%, rust leaf: 13.97%, 46.40% and 39.65%, yel owing leaf curl disease leaf: 24.01%,36.55% and 39.44%). For sub-peak area ratios (A1 563/A1 605, A1 650/A1 605 and A1 563/A1 654), those of four kinds of diseased leaves were smal er than that of healthy leaves, and there were also differences among four kinds of diseased leaves. The results proved that FTIR combining with curve fitting might be a potential y useful tool for detecting different kinds of broad bean diseases.展开更多
With the technique of Fourier transform near infrared (FT-NIR) spectroscopy, the calibration models for quantitative analysis of sucrose and polarization in sugarcane juice were developed by using transmission mode an...With the technique of Fourier transform near infrared (FT-NIR) spectroscopy, the calibration models for quantitative analysis of sucrose and polarization in sugarcane juice were developed by using transmission mode and calibrating with partial least square (PLS) algorithm. The determination coefficients (R2) of the predicted models for sucrose and polarization in juice were 0. 9980 and 0. 9979 respectively; the root mean square errors of cross validation (RMSECV) were 0. 143 and 0. 155% for sucrose and polarization in juice respectively. The predictive errors measured by FT-NIR were close to those by routine laboratory methods. The results demonstrated that the FT-NIR methods had high accuracy and they were able to replace the routine laboratory analysis. It was also demonstrated that as a rapid and accurate measurement, the FT-NIR technique had potential applications in quality control of mill sugarcane, establishment of payment system based on sugarcane quality, and selection of clones in sugarcane breeding.展开更多
In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice...In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice,forming solid solutions.The catalysts were then used for the selective catalytic reduction(SCR)of NO by CO.The Cu‐doped catalyst exhibited the highest SCR activity;it had a T50(i.e.,50%NO conversion)of only 83°C and a T90(i.e.,90%NO conversion)of 126°C.Such an activity was also higher than in many state‐of‐the‐art catalysts.In situ diffuse reflectance Fourier transform infrared spectroscopy suggested that the MOx‐CeO2 catalysts(M=Co and Fe)mainly followed an Eley‐Rideal reaction mechanism for CO‐SCR.In contrast,a Langmuir‐Hinshelwood SCR reaction mechanism occurred in CuO‐CeO2 owing to the presence of Cu+species,which ensured effective adsorption of CO.This explains why CuO‐CeO2 exhibited the highest activity with regard to the SCR of NO by CO.展开更多
Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Se...Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Setaria italica have been chosen as suitable monocotyledonous models for plants possessing the C4 pathway of photosynthesis including sorghum,maize,sugarcane,switchgrass and Miscanthus×giganteus.Accurate partial least squares regression(PLSR)models to predict S.italica stem composition have been generated,based upon Fourier transform mid-infrared(FTIR)spectra and calibrated with wet chemistry determinations of ground S.italica stem material measured using a modified version of the US National Renewable Energy Laboratory(NREL)acid hydrolysis protocol.The models facilitated a high-throughput screening analysis for glucan,xylan,Klason lignin and acid soluble lignin(ASL)in a collection of 183 natural S.italica variants and clustered them into classes,some possessing unique chemotypes.The predictive models provide a highly efficient screening tool for large scale breeding programs aimed at identifying lines or mutants possessing unique cell wall chemotypes.Genes encoding key catalytic enzymes of the lignin biosynthesis pathway exhibit a high level of conservation with matching expression profiles,measured by RT-q PCR,among accessions of S.italica,which closely mirror profiles observed in the different developmental regions of an elongating internode of S.viridis by RNASeq.展开更多
Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine de...Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 ℃. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ~1, ~3 phosphate contour: the ratio of the height amplitude of ~3 P04 to that of/11 P04 (Method 1) and the shift of the v3 P04 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (P〈0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATR- FTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion.展开更多
AIM: Real-time and rapid Identification of the malignant tissue can be performed during or before surgical operation. Here we aimed to detect in vivo and in situ colorectal cancer by using Fourier transform infrared (...AIM: Real-time and rapid Identification of the malignant tissue can be performed during or before surgical operation. Here we aimed to detect in vivo and in situ colorectal cancer by using Fourier transform infrared (FTIR) spectroscopy and fiber-optic technology. METHODS: A total of five patients with large intestine cancer were detected in vivo and in situ. Of them, three cases of colon cancer and one case of cecum cancer were detected intraoperatively and in vivo by using a FTIR spectrometer during surgical operation, and one case of rectum cancer was explored non-invasively and in vivo before the surgical operation. Normal and malignant colorectal tissues were detected in vivo and in situ using FTIR spectroscopy on the basis of fundamental studies. RESULTS: There were significant differences between FTIR spectra of normal and malignant colorectal tissues detected in vivo and in situ. Experimental results revealed that the spectral characteristics of normal and malignant tissues found in vivo and in situ were similar to those obtained from in vitro measurement in our previous fundamental research. CONCLUSION: FTIR fiber-optic attenuated total reflectance (ATR) spectroscopy can identify in situ and in vivo colorectal cancer. FTIR spectroscopie method with fiber optics is a non-invasive, rapid, accurate and in vivo cancer detection technique in clinical diagnosis.展开更多
Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides...Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides great opportunities for studying various complex systems, the experimental implementation and theoretical description of 2D FT spectroscopy measurement still face many challenges, which limits their wide application.Recently, the 2D FT spectroscopy reaches maturity due to many new developments which greatly reduces the technical barrier in the experimental implementation of the 2D FT spectrometer. There have been several different approaches developed for the optical design of the 2D FT spectrometer, each with its own advantages and limitations. Thus, a procedure to help an experimentalist to build a 2D FT spectroscopy experimental apparatus is needed.This tutorial review is intending to provide an accessible introduction for a beginner to build a 2D FT spectrometer.展开更多
In this paper,in vivo spectra from 23 patients'blood samples with various Creatinine(Cr)concentration levels ranging from 0.96 to 12.5 mg/dL were measured using Fourier transform near-infrared spectrometer(FT-NIRS...In this paper,in vivo spectra from 23 patients'blood samples with various Creatinine(Cr)concentration levels ranging from 0.96 to 12.5 mg/dL were measured using Fourier transform near-infrared spectrometer(FT-NIRS)and spectrum quantitative analysis method.Since Cr undergoes passive filtration,it serves as a key biomarker of kidneys function via the estimation of glomerular filtration rate.Thus,increased blood Cr concentration reflects impaired renal func-tion.After spectra pre processing and outlier exclusion,a spectral model was developed based on partial least squares regression(PLSR)method,wherein Cr concentrations correlated with filtered NIR spectra across several peaks,where Cr is know n to absorb NIR light.Several statistical metrics were applied to estimate the model efficiency during data analysis.Comparison of spectra-derived concentrations to reference Cr measurements by the current gold-standard Jaffe's method held in hospital lab revealed a Cr prediction accuracy of 1.64 mg/dL with good corre-lation of R=0.9.Bland-Altman plots were used to compare between our calculations and ref-erence lab values and reveal minimal bias between the two.The finding presented the potential of FT-NIRS coupled with PLSR technique for Cr determination.展开更多
Wild-grown Ganoderma lucidum (G. lucidum), a traditional Chinese herbal medicine, is highly cherished and expensive for its medicinal efficiency. This study targets the development of an accurate and effective analyti...Wild-grown Ganoderma lucidum (G. lucidum), a traditional Chinese herbal medicine, is highly cherished and expensive for its medicinal efficiency. This study targets the development of an accurate and effective analytical method to distinguish wild-grown G. lucidum from cultivated ones, which are of essential importance for the quality assurance and estimation of its medicinal value. Furthermore, different parts of G. lucidum have been studied to examine the differences between wild-grown and cultivated ones. Fourier transform infrared (FTIR) diffuse reflectance spectroscopy combined with the appropriate chemometric method has been proven to be a rapid and powerful tool for discrimination of wild-grown and cultivated G. lucidum with classification accuracy of 98%. The informative spectral absorption bands for discrimination emphasized by the linear diagnostic rule have provided quantitative interpretations of the chemical constituents of wild-grown G. lucidum regarding its anticancer effects.展开更多
Objective:To investigate the active components Zuogui Pill,a typical recipe for nourishing kidney essence in the traditional Chinese medicine.Methods:Adult male Sprague Dawley rats were treated with the traditional Ch...Objective:To investigate the active components Zuogui Pill,a typical recipe for nourishing kidney essence in the traditional Chinese medicine.Methods:Adult male Sprague Dawley rats were treated with the traditional Chinese herbal medicine Zuogui Pill and the active components found in the serum of the animals were analyzed by Fourier transform infrared(FTIR)spectroscopy.FTIR spectra of serum samples of treated and untreated rats were analyzed and the A2960/A2931 and A1540/A1080 ratios were calculated.Results:A2960/A2931 ratios of the serum samples collected following the administration of Zuogui Pill were significantly higher than those of the normal serum samples.FTIR data were then fitted using a Gaussian equation for wave numbers in the range of 1140e1000 cm1.ARNA/ADNA ratios in the serum of rats treated with Zuogui Pill were higher than those found in normal rat serum.Conclusion:FTIR spectroscopy could be used as an analytical tool to detect the activecomponents in serum of animals treated with Zuogui Pill.展开更多
Rapid and cost effective quantification of lignocellulosic components (cellulose, hemicelluloses and lignin) of agricultural biomass (barley, canola, oat and wheat) is essential to determine the effect of various ...Rapid and cost effective quantification of lignocellulosic components (cellulose, hemicelluloses and lignin) of agricultural biomass (barley, canola, oat and wheat) is essential to determine the effect of various pre-treatments (such as steam explosion) on biomass used as feedstock for the biofuel industry. Fourier Transformed Infrared (FTIR) spectroscopy was considered as an option to achieve this objective. Regression equations having R2 values of 0.89, 0.99 and 0.98 were developed to predict the cellulose, hemicelluloses and lignin compounds of biomass, respectively. The average absolute difference in predicted and measured cellulose, hemicellulose and lignin in agricultural biomass was 7.5%, 2.5%, and 3.8%, respectively.展开更多
The present work establishes a systematic approach based on the application of in-situ Fourier transform infrared spectroscopy (FTIR) for the investigation of the crystal structure, thermal stability, redox behavior...The present work establishes a systematic approach based on the application of in-situ Fourier transform infrared spectroscopy (FTIR) for the investigation of the crystal structure, thermal stability, redox behavior (temperature-programmed reduction/temperatureprogrammed re-oxidation) as well as the catalytic properties of Co3O4 thin films. The syntheses of Co3O4 were achieved by chemical vapor deposition in the temperature range of 400-500℃. The structure analysis of the as-prepared material revealed the presence of two prominent IR bands peaking at 544 cm-1 (υ1) and 650 cm-1 (υ2) respectively, which originate from the stretching vibrations of the Co-O bond, characteristic of the Co3O4 spinel. The lattice stability limit of Co3O4 was estimated to be above 650℃. The redox properties of the spinel structure were determined by integrating the area under the emission bands υ1 and υ2 as a function of the temperature. Moreover, Co3O4 has been successfully tested as a catalyst towards complete oxidation of dimethyl ether below 340 ℃. The exhaust gas analysis during the catalytic process by in situ absorption FTIR revealed that only CO2 and H2O were detected as the final products in the catalytic reaction. The redox behavior suggests that the oxidation of dimethyl ether over Co3O4 follows a Mars-van Krevelen type mechanism. The comprehensive application of in situ FTIR provides a novel diagnostic tool in characterization and performance test of catalysts.展开更多
Solids and solutions of sodium phosphates with various chain lengths have been studied by using the techniques of diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and attenuated total reflection-Fou...Solids and solutions of sodium phosphates with various chain lengths have been studied by using the techniques of diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and attenuated total reflection-Fourier transform infrared (ATR-ETIR) spectroscopy, respectively. A systematic study of the infrared spectra of the solid sodium phosphates has been conducted on the basis of the information available it? the literatures to establish the assignments of the infrared vibrations of the different groups in the phosphate molecules. The infrared spectra of the solutions of sodium phosphates have been analyzed according to the infrared study on the relevant solids, in conjunction with the study of the phosphate species distribution in solution on the basis of the acid-base reaction equilibria. The results obtained have revealed the correlations between the infrared absorption spectra and the structure of the different P-O groups in different kinds of phosphates and are useful in the analysis of phosphate solids and solutions widely used in the various operations of mineral processing.展开更多
Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed.The present investig...Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed.The present investigation aimed to create a simple but sophisticated method for the identification of plant-pathogenic fungi by Fourier transform infrared(FTIR)spectroscopy.In this study,FTIR-attenuated total reflectance(ATR)spectroscopy was used in combination with chemometric analysis for identification of important pathogenic fungi of horticultural plants.Mixtures of mycelia and spores from 27fungal strains belonging to nine different families were collected from liquid PD or solid PDA media cultures and subjected to FTIR-ATR spectroscopy measurements.The FTIR-ATR spectra ranging from 4 000to 400cm-1 were obtained.To classify the FTIRATR spectra,cluster analysis was compared with canonical vitiate analysis(CVA)in the spectral regions of3 050~2 800and 1 800~900cm-1.Results showed that the identification accuracies achieved 97.53%and99.18%for the cluster analysis and CVA analysis,respectively,demonstrating the high potential of this technique for fungal strain identification.展开更多
BACKGROUND: Fourier transform infrared (FT-IR) spectroscopy is a physical method applied to the study of cellular changes at the molecular level in various normal and diseased human tissues, including cancer. This stu...BACKGROUND: Fourier transform infrared (FT-IR) spectroscopy is a physical method applied to the study of cellular changes at the molecular level in various normal and diseased human tissues, including cancer. This study was undertaken to establish a cellular basis for the diagnosis of carcinoma tissue, using FT-IR spectroscopy to study a carcinoma cell line and investigating the specific spectral features of the cell line. METHODS: The FT-IR spectra of cultured gallbladder carcinoma cells (GBC-SD) smeared on a BaF(2) window were measured with a Nicolet Magna750-II FT-IR spectrometer. A comparative study was subsequently carried out between the spectra of cultured gallbladder carcinoma cells and those of corresponding carcinoma tissue. RESULTS: Several infrared spectral features were obtained, and the results suggest that the spectral features of the carcinoma cell line reflect those of carcinoma tissue, though the latter are more complex, probably due to the intrinsic complexity of the tissue. CONCLUSION: The diagnosis of carcinoma tissue by FTIR spectroscopy has a sufficient cellular basis.展开更多
In order to distinguish eight carnation cultivars, 40 samples were analyzed by Fourier transform infrared (FI'IR) spectroscopy combined with principal component analysis (PCA) and hierarchical cluster analysis (...In order to distinguish eight carnation cultivars, 40 samples were analyzed by Fourier transform infrared (FI'IR) spectroscopy combined with principal component analysis (PCA) and hierarchical cluster analysis (HCA). According to the results, infrared spectra of eight carnation cuhivars were similar, but signifi- cant differences were observed in wave numbers and absorption peak intensities in the range of 1 800 -700cm-1. The second order derivative spectra in the range of 1 800 -700 cm -l were selected to perform principal component analysis (PCA) and hierarchical cluster analysis (HCA). The cumulative contribution rate of the first three principal components reached 96.2%. The classification accuracy rate of PCA and HCA was 95% and 100%, respectively. The results demonstrated that Fourier transform infrared (FTIR) spectroscopy combined with principal component analysis (PCA) and hierarchical cluster analysis (HCA) could be used for identification of different carnation cultivars.展开更多
Fourier Transform Infrared Spectroscopy (FTIR) was used to quantify total monosaccharide content in the bacterium Enterobacter cloacae and several of its biofilm mutants. Bacterial biofilm samples were grown on trypti...Fourier Transform Infrared Spectroscopy (FTIR) was used to quantify total monosaccharide content in the bacterium Enterobacter cloacae and several of its biofilm mutants. Bacterial biofilm samples were grown on trypticase soy agar, and 30 μL aliquots of aqueous sample bacterial plus biofilm were deposited into the center of barium fluoride crystals and dried at 50°C for 1-hour before being scanned by FTIR. The total amounts of monosaccharides were estimated using the absorbance of the mono-saccharide peak, 1192 - 958 cm–1, and normalized using the amide II peak, 1585 - 1483 cm–1. This method provided a linear correlation between the absorbance of the monosaccharide peak and concentration of monosaccharide in standard monosaccharides, fructose, glucose, mannose, and rhamnose, over a concentration range of 0.5 - 2.0 mg/mL.展开更多
Very long chain fatty acids (VLCFAs) are accumulated in cells and blood in patients with peroxisomal diseases, such as adrenoleukodystrophy (ALD) and Zellwger Syndrome (ZS). The purpose of this study is to investigate...Very long chain fatty acids (VLCFAs) are accumulated in cells and blood in patients with peroxisomal diseases, such as adrenoleukodystrophy (ALD) and Zellwger Syndrome (ZS). The purpose of this study is to investigate usefulness of Fourier transform infrared spectroscopy (FTIR) with attenuated total reflection (ATR) analysis method for clinical diagnosis of those diseases, thereby we measured the infrared spectra of the sera of patients and healthy controls. Correlation coefficients between 2nd derivative FTIR spectra of the serum samples and the VLCFA content ratio which is used as a clinical parameter to date were comprehensively calculated to investigate which wavenumber showed high correlation with the VLCFA ratio. Multiple regression analysis using the serum FTIR spectra showed that high correlations were observed with VLCFA ratios (C26:0/C22:0 ratio), and we could construct a suitable regression model (R2 = 0.97, p ﹣19). In addition, the model system using various VLCFAs in newborn bovine serum also showed that several FTIR peaks in 800 ~ 900 cm﹣1 region were found to have good correlation with VLCFA ratios. Our results support that FTIR analysis is useful for diagnosis of peroxisomal diseases.展开更多
In this paper,the Fourier transform near-infrared(FTNIR)diffuse reflectance spectroscopy is applied for the rapid determination of protein in millet.The partial least-squares(PLS)regression is successfully used as an ...In this paper,the Fourier transform near-infrared(FTNIR)diffuse reflectance spectroscopy is applied for the rapid determination of protein in millet.The partial least-squares(PLS)regression is successfully used as an effective multivariate calibration technique.The calibration set is composed of 20 standard millet samples that the protein contents were determined by the traditional Kjeldahl method.The optimal model dimension is found to be 5 by cross-validation.22 millet samples were determined by the proposed FTNIR-PLS method.The correlation coefficient between the concentration values obtained by the FTNIR-PLS method and the traditional Kjeldahl method is 0.9805.The standard error of prediction(SEP)is 0.28% and the mean recovery is 100.2%.The proposed method has been successfully applied for the routine analysis of protein in about 10,000 grain samples.展开更多
基金Supported by National Natural Science Foundation of China(30960179)Program for Innovative Research Team in Science and Technology in University of Yunnan Province~~
文摘Fourier transform infrared (FTIR) spectroscopy was used to study diseased leaves in broad bean. Results showed that the infrared spectra of different broad bean diseased leaves were similar, which were mainly made up of the vibrational absorption bands of protein,lipid and polysaccharide.There were minor differences in-cluding the spectral peak position, peak shape and the absorption intensity in the range of 1 800-1 300 cm-1. There were obvious differences among their second derivative spectra in the range of 1 800-1 300 cm-1. After the procedure of the Fourier self-deconvolution and curve fitting of health bean leaves and broad bean diseased leaves in the range of 1 700-1 500 cm-1, three sub-peaks were obtained at 1 550 cm-1 (protein amide Ⅱ band), 1 605 cm-1 (lignin) and 1 650 cm-1 (protein amide I band).The ratios of relative areas of the bands of amide Ⅱ, lignin, and amide I were 38.86%, 28.68% and 32.47% in the spectra of healthy leaves, respec-tively. It was distinguished from the diseased leaves (chocolate spot leaf: 15.42%, 42.98% and 41.61%, ring spot leaf:32.39%, 35.63% and 31.98%, rust leaf: 13.97%, 46.40% and 39.65%, yel owing leaf curl disease leaf: 24.01%,36.55% and 39.44%). For sub-peak area ratios (A1 563/A1 605, A1 650/A1 605 and A1 563/A1 654), those of four kinds of diseased leaves were smal er than that of healthy leaves, and there were also differences among four kinds of diseased leaves. The results proved that FTIR combining with curve fitting might be a potential y useful tool for detecting different kinds of broad bean diseases.
文摘With the technique of Fourier transform near infrared (FT-NIR) spectroscopy, the calibration models for quantitative analysis of sucrose and polarization in sugarcane juice were developed by using transmission mode and calibrating with partial least square (PLS) algorithm. The determination coefficients (R2) of the predicted models for sucrose and polarization in juice were 0. 9980 and 0. 9979 respectively; the root mean square errors of cross validation (RMSECV) were 0. 143 and 0. 155% for sucrose and polarization in juice respectively. The predictive errors measured by FT-NIR were close to those by routine laboratory methods. The results demonstrated that the FT-NIR methods had high accuracy and they were able to replace the routine laboratory analysis. It was also demonstrated that as a rapid and accurate measurement, the FT-NIR technique had potential applications in quality control of mill sugarcane, establishment of payment system based on sugarcane quality, and selection of clones in sugarcane breeding.
文摘In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice,forming solid solutions.The catalysts were then used for the selective catalytic reduction(SCR)of NO by CO.The Cu‐doped catalyst exhibited the highest SCR activity;it had a T50(i.e.,50%NO conversion)of only 83°C and a T90(i.e.,90%NO conversion)of 126°C.Such an activity was also higher than in many state‐of‐the‐art catalysts.In situ diffuse reflectance Fourier transform infrared spectroscopy suggested that the MOx‐CeO2 catalysts(M=Co and Fe)mainly followed an Eley‐Rideal reaction mechanism for CO‐SCR.In contrast,a Langmuir‐Hinshelwood SCR reaction mechanism occurred in CuO‐CeO2 owing to the presence of Cu+species,which ensured effective adsorption of CO.This explains why CuO‐CeO2 exhibited the highest activity with regard to the SCR of NO by CO.
文摘Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Setaria italica have been chosen as suitable monocotyledonous models for plants possessing the C4 pathway of photosynthesis including sorghum,maize,sugarcane,switchgrass and Miscanthus×giganteus.Accurate partial least squares regression(PLSR)models to predict S.italica stem composition have been generated,based upon Fourier transform mid-infrared(FTIR)spectra and calibrated with wet chemistry determinations of ground S.italica stem material measured using a modified version of the US National Renewable Energy Laboratory(NREL)acid hydrolysis protocol.The models facilitated a high-throughput screening analysis for glucan,xylan,Klason lignin and acid soluble lignin(ASL)in a collection of 183 natural S.italica variants and clustered them into classes,some possessing unique chemotypes.The predictive models provide a highly efficient screening tool for large scale breeding programs aimed at identifying lines or mutants possessing unique cell wall chemotypes.Genes encoding key catalytic enzymes of the lignin biosynthesis pathway exhibit a high level of conservation with matching expression profiles,measured by RT-q PCR,among accessions of S.italica,which closely mirror profiles observed in the different developmental regions of an elongating internode of S.viridis by RNASeq.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)the Ministry of Education(2013R1A1A2061732)
文摘Although many techniques are available to assess enamel erosion in vitro, a simple, non-destructive method with sufficient sensitivity for quantifying dental erosion is required. This study characterized the bovine dental enamel erosion induced by various acidic beverages in vitro using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Deionized water (control) and 10 acidic beverages were selected to study erosion, and the pH and neutralizable acidity were measured. Bovine anterior teeth (110) were polished with up to 1 200-grit silicon carbide paper to produce flat enamel surfaces, which were then immersed in 20 mL of the beverages for 30 min at 37 ℃. The degree of erosion was evaluated using ATR-FTIR spectroscopy and Vickers' microhardness measurements. The spectra obtained were interpreted in two ways that focused on the ~1, ~3 phosphate contour: the ratio of the height amplitude of ~3 P04 to that of/11 P04 (Method 1) and the shift of the v3 P04 peak to a higher wavenumber (Method 2). The percentage changes in microhardness after the erosion treatments were primarily affected by the pH of the immersion media. Regression analyses revealed highly significant correlations between the surface hardness change and the degree of erosion, as detected by ATR-FTIR spectroscopy (P〈0.001). Method 1 was the most sensitive to these changes, followed by surface hardness change measurements and Method 2. This study suggests that ATR- FTIR spectroscopy is potentially advantageous over the microhardness test as a simple, non-destructive, sensitive technique for the quantification of enamel erosion.
基金Supported by the National Natural Science Foundation of China, No. 30371604 State Key Project of China, No. 2002CCA01900
文摘AIM: Real-time and rapid Identification of the malignant tissue can be performed during or before surgical operation. Here we aimed to detect in vivo and in situ colorectal cancer by using Fourier transform infrared (FTIR) spectroscopy and fiber-optic technology. METHODS: A total of five patients with large intestine cancer were detected in vivo and in situ. Of them, three cases of colon cancer and one case of cecum cancer were detected intraoperatively and in vivo by using a FTIR spectrometer during surgical operation, and one case of rectum cancer was explored non-invasively and in vivo before the surgical operation. Normal and malignant colorectal tissues were detected in vivo and in situ using FTIR spectroscopy on the basis of fundamental studies. RESULTS: There were significant differences between FTIR spectra of normal and malignant colorectal tissues detected in vivo and in situ. Experimental results revealed that the spectral characteristics of normal and malignant tissues found in vivo and in situ were similar to those obtained from in vitro measurement in our previous fundamental research. CONCLUSION: FTIR fiber-optic attenuated total reflectance (ATR) spectroscopy can identify in situ and in vivo colorectal cancer. FTIR spectroscopie method with fiber optics is a non-invasive, rapid, accurate and in vivo cancer detection technique in clinical diagnosis.
基金the National Natural Science Foundation of China(No.91753118 and No.21773012)the Fundamental Research Funds for Central Universities。
文摘Two-dimensional Fourier transform(2D FT) spectroscopy is an important technology that developed in recent decades and has many advantages over other ultrafast spectroscopy methods. Although 2D FT spectroscopy provides great opportunities for studying various complex systems, the experimental implementation and theoretical description of 2D FT spectroscopy measurement still face many challenges, which limits their wide application.Recently, the 2D FT spectroscopy reaches maturity due to many new developments which greatly reduces the technical barrier in the experimental implementation of the 2D FT spectrometer. There have been several different approaches developed for the optical design of the 2D FT spectrometer, each with its own advantages and limitations. Thus, a procedure to help an experimentalist to build a 2D FT spectroscopy experimental apparatus is needed.This tutorial review is intending to provide an accessible introduction for a beginner to build a 2D FT spectrometer.
文摘In this paper,in vivo spectra from 23 patients'blood samples with various Creatinine(Cr)concentration levels ranging from 0.96 to 12.5 mg/dL were measured using Fourier transform near-infrared spectrometer(FT-NIRS)and spectrum quantitative analysis method.Since Cr undergoes passive filtration,it serves as a key biomarker of kidneys function via the estimation of glomerular filtration rate.Thus,increased blood Cr concentration reflects impaired renal func-tion.After spectra pre processing and outlier exclusion,a spectral model was developed based on partial least squares regression(PLSR)method,wherein Cr concentrations correlated with filtered NIR spectra across several peaks,where Cr is know n to absorb NIR light.Several statistical metrics were applied to estimate the model efficiency during data analysis.Comparison of spectra-derived concentrations to reference Cr measurements by the current gold-standard Jaffe's method held in hospital lab revealed a Cr prediction accuracy of 1.64 mg/dL with good corre-lation of R=0.9.Bland-Altman plots were used to compare between our calculations and ref-erence lab values and reveal minimal bias between the two.The finding presented the potential of FT-NIRS coupled with PLSR technique for Cr determination.
文摘Wild-grown Ganoderma lucidum (G. lucidum), a traditional Chinese herbal medicine, is highly cherished and expensive for its medicinal efficiency. This study targets the development of an accurate and effective analytical method to distinguish wild-grown G. lucidum from cultivated ones, which are of essential importance for the quality assurance and estimation of its medicinal value. Furthermore, different parts of G. lucidum have been studied to examine the differences between wild-grown and cultivated ones. Fourier transform infrared (FTIR) diffuse reflectance spectroscopy combined with the appropriate chemometric method has been proven to be a rapid and powerful tool for discrimination of wild-grown and cultivated G. lucidum with classification accuracy of 98%. The informative spectral absorption bands for discrimination emphasized by the linear diagnostic rule have provided quantitative interpretations of the chemical constituents of wild-grown G. lucidum regarding its anticancer effects.
基金the National International Cooperation Science and Technology Support Program of the Ministry of Science and Technology of the People’s Republic of China(2012DFA31330).
文摘Objective:To investigate the active components Zuogui Pill,a typical recipe for nourishing kidney essence in the traditional Chinese medicine.Methods:Adult male Sprague Dawley rats were treated with the traditional Chinese herbal medicine Zuogui Pill and the active components found in the serum of the animals were analyzed by Fourier transform infrared(FTIR)spectroscopy.FTIR spectra of serum samples of treated and untreated rats were analyzed and the A2960/A2931 and A1540/A1080 ratios were calculated.Results:A2960/A2931 ratios of the serum samples collected following the administration of Zuogui Pill were significantly higher than those of the normal serum samples.FTIR data were then fitted using a Gaussian equation for wave numbers in the range of 1140e1000 cm1.ARNA/ADNA ratios in the serum of rats treated with Zuogui Pill were higher than those found in normal rat serum.Conclusion:FTIR spectroscopy could be used as an analytical tool to detect the activecomponents in serum of animals treated with Zuogui Pill.
文摘Rapid and cost effective quantification of lignocellulosic components (cellulose, hemicelluloses and lignin) of agricultural biomass (barley, canola, oat and wheat) is essential to determine the effect of various pre-treatments (such as steam explosion) on biomass used as feedstock for the biofuel industry. Fourier Transformed Infrared (FTIR) spectroscopy was considered as an option to achieve this objective. Regression equations having R2 values of 0.89, 0.99 and 0.98 were developed to predict the cellulose, hemicelluloses and lignin compounds of biomass, respectively. The average absolute difference in predicted and measured cellulose, hemicellulose and lignin in agricultural biomass was 7.5%, 2.5%, and 3.8%, respectively.
文摘The present work establishes a systematic approach based on the application of in-situ Fourier transform infrared spectroscopy (FTIR) for the investigation of the crystal structure, thermal stability, redox behavior (temperature-programmed reduction/temperatureprogrammed re-oxidation) as well as the catalytic properties of Co3O4 thin films. The syntheses of Co3O4 were achieved by chemical vapor deposition in the temperature range of 400-500℃. The structure analysis of the as-prepared material revealed the presence of two prominent IR bands peaking at 544 cm-1 (υ1) and 650 cm-1 (υ2) respectively, which originate from the stretching vibrations of the Co-O bond, characteristic of the Co3O4 spinel. The lattice stability limit of Co3O4 was estimated to be above 650℃. The redox properties of the spinel structure were determined by integrating the area under the emission bands υ1 and υ2 as a function of the temperature. Moreover, Co3O4 has been successfully tested as a catalyst towards complete oxidation of dimethyl ether below 340 ℃. The exhaust gas analysis during the catalytic process by in situ absorption FTIR revealed that only CO2 and H2O were detected as the final products in the catalytic reaction. The redox behavior suggests that the oxidation of dimethyl ether over Co3O4 follows a Mars-van Krevelen type mechanism. The comprehensive application of in situ FTIR provides a novel diagnostic tool in characterization and performance test of catalysts.
文摘Solids and solutions of sodium phosphates with various chain lengths have been studied by using the techniques of diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and attenuated total reflection-Fourier transform infrared (ATR-ETIR) spectroscopy, respectively. A systematic study of the infrared spectra of the solid sodium phosphates has been conducted on the basis of the information available it? the literatures to establish the assignments of the infrared vibrations of the different groups in the phosphate molecules. The infrared spectra of the solutions of sodium phosphates have been analyzed according to the infrared study on the relevant solids, in conjunction with the study of the phosphate species distribution in solution on the basis of the acid-base reaction equilibria. The results obtained have revealed the correlations between the infrared absorption spectra and the structure of the different P-O groups in different kinds of phosphates and are useful in the analysis of phosphate solids and solutions widely used in the various operations of mineral processing.
基金the National Natural Science Foundation of China(31201473)the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-IVFCAAS)funded by the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture,P.R.China
文摘Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed.The present investigation aimed to create a simple but sophisticated method for the identification of plant-pathogenic fungi by Fourier transform infrared(FTIR)spectroscopy.In this study,FTIR-attenuated total reflectance(ATR)spectroscopy was used in combination with chemometric analysis for identification of important pathogenic fungi of horticultural plants.Mixtures of mycelia and spores from 27fungal strains belonging to nine different families were collected from liquid PD or solid PDA media cultures and subjected to FTIR-ATR spectroscopy measurements.The FTIR-ATR spectra ranging from 4 000to 400cm-1 were obtained.To classify the FTIRATR spectra,cluster analysis was compared with canonical vitiate analysis(CVA)in the spectral regions of3 050~2 800and 1 800~900cm-1.Results showed that the identification accuracies achieved 97.53%and99.18%for the cluster analysis and CVA analysis,respectively,demonstrating the high potential of this technique for fungal strain identification.
基金supported by a grant from the National Natural Science Foundation of China(No.30500119)
文摘BACKGROUND: Fourier transform infrared (FT-IR) spectroscopy is a physical method applied to the study of cellular changes at the molecular level in various normal and diseased human tissues, including cancer. This study was undertaken to establish a cellular basis for the diagnosis of carcinoma tissue, using FT-IR spectroscopy to study a carcinoma cell line and investigating the specific spectral features of the cell line. METHODS: The FT-IR spectra of cultured gallbladder carcinoma cells (GBC-SD) smeared on a BaF(2) window were measured with a Nicolet Magna750-II FT-IR spectrometer. A comparative study was subsequently carried out between the spectra of cultured gallbladder carcinoma cells and those of corresponding carcinoma tissue. RESULTS: Several infrared spectral features were obtained, and the results suggest that the spectral features of the carcinoma cell line reflect those of carcinoma tissue, though the latter are more complex, probably due to the intrinsic complexity of the tissue. CONCLUSION: The diagnosis of carcinoma tissue by FTIR spectroscopy has a sufficient cellular basis.
基金Supported by National Natural Science Foundation of China"Vibration Spectrum-based Diagnosis of Biological Diseases in Broad Bean"(30960179)Science and Technology Innovation Program for Universities in Yunnan Province
文摘In order to distinguish eight carnation cultivars, 40 samples were analyzed by Fourier transform infrared (FI'IR) spectroscopy combined with principal component analysis (PCA) and hierarchical cluster analysis (HCA). According to the results, infrared spectra of eight carnation cuhivars were similar, but signifi- cant differences were observed in wave numbers and absorption peak intensities in the range of 1 800 -700cm-1. The second order derivative spectra in the range of 1 800 -700 cm -l were selected to perform principal component analysis (PCA) and hierarchical cluster analysis (HCA). The cumulative contribution rate of the first three principal components reached 96.2%. The classification accuracy rate of PCA and HCA was 95% and 100%, respectively. The results demonstrated that Fourier transform infrared (FTIR) spectroscopy combined with principal component analysis (PCA) and hierarchical cluster analysis (HCA) could be used for identification of different carnation cultivars.
文摘Fourier Transform Infrared Spectroscopy (FTIR) was used to quantify total monosaccharide content in the bacterium Enterobacter cloacae and several of its biofilm mutants. Bacterial biofilm samples were grown on trypticase soy agar, and 30 μL aliquots of aqueous sample bacterial plus biofilm were deposited into the center of barium fluoride crystals and dried at 50°C for 1-hour before being scanned by FTIR. The total amounts of monosaccharides were estimated using the absorbance of the mono-saccharide peak, 1192 - 958 cm–1, and normalized using the amide II peak, 1585 - 1483 cm–1. This method provided a linear correlation between the absorbance of the monosaccharide peak and concentration of monosaccharide in standard monosaccharides, fructose, glucose, mannose, and rhamnose, over a concentration range of 0.5 - 2.0 mg/mL.
文摘Very long chain fatty acids (VLCFAs) are accumulated in cells and blood in patients with peroxisomal diseases, such as adrenoleukodystrophy (ALD) and Zellwger Syndrome (ZS). The purpose of this study is to investigate usefulness of Fourier transform infrared spectroscopy (FTIR) with attenuated total reflection (ATR) analysis method for clinical diagnosis of those diseases, thereby we measured the infrared spectra of the sera of patients and healthy controls. Correlation coefficients between 2nd derivative FTIR spectra of the serum samples and the VLCFA content ratio which is used as a clinical parameter to date were comprehensively calculated to investigate which wavenumber showed high correlation with the VLCFA ratio. Multiple regression analysis using the serum FTIR spectra showed that high correlations were observed with VLCFA ratios (C26:0/C22:0 ratio), and we could construct a suitable regression model (R2 = 0.97, p ﹣19). In addition, the model system using various VLCFAs in newborn bovine serum also showed that several FTIR peaks in 800 ~ 900 cm﹣1 region were found to have good correlation with VLCFA ratios. Our results support that FTIR analysis is useful for diagnosis of peroxisomal diseases.
文摘In this paper,the Fourier transform near-infrared(FTNIR)diffuse reflectance spectroscopy is applied for the rapid determination of protein in millet.The partial least-squares(PLS)regression is successfully used as an effective multivariate calibration technique.The calibration set is composed of 20 standard millet samples that the protein contents were determined by the traditional Kjeldahl method.The optimal model dimension is found to be 5 by cross-validation.22 millet samples were determined by the proposed FTNIR-PLS method.The correlation coefficient between the concentration values obtained by the FTNIR-PLS method and the traditional Kjeldahl method is 0.9805.The standard error of prediction(SEP)is 0.28% and the mean recovery is 100.2%.The proposed method has been successfully applied for the routine analysis of protein in about 10,000 grain samples.