Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepf...Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac activity.Addressing this gap,many researchers have developed detection methods focusing on biometric characteristics.These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection accuracy.However,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac activity.We introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification network.Additionally,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention mechanisms.Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces.展开更多
Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology refe...Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).展开更多
Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption ev...Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.展开更多
Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employ...Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.展开更多
This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d...This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.展开更多
Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properti...Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.展开更多
Let and denote respectively the functionswhere λ≥1, The author discusses the similarity transformation of the regularizing functionals of these functions and the similar property of their Fourier transformation.
针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-fr...针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-frequency hopping,FrFT-FH)架构,在不改变Chirp信号扩频增益的前提下,通过时宽分割和重组(time width division and reorganization,TDR),降低信号在分数阶傅里叶变换域和周期域的能量聚敛特性。仿真结果表明,相较于现有LPD波形只能实现单一特征域隐蔽的问题,所提波形在不影响系统通信性能的前提下,面对频域检测、分数阶傅里叶变换域检测、周期域检测多种检测手段,在10 dB信噪比条件下的信号检测概率均低于0.2,满足系统在不同特征域下的LPD需求。展开更多
In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechani...In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform.The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too.In this paper,the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators(IWOP)are used to establish the entanglement fractional Fourier transform theory to the extent of quantum.A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.展开更多
This paper introduces an efficient image cryptography system.The pro-posed image cryptography system is based on employing the two-dimensional(2D)chaotic henon map(CHM)in the Discrete Fourier Transform(DFT).The propos...This paper introduces an efficient image cryptography system.The pro-posed image cryptography system is based on employing the two-dimensional(2D)chaotic henon map(CHM)in the Discrete Fourier Transform(DFT).The proposed DFT-based CHM image cryptography has two procedures which are the encryption and decryption procedures.In the proposed DFT-based CHM image cryptography,the confusion is employed using the CHM while the diffu-sion is realized using the DFT.So,the proposed DFT-based CHM image crypto-graphy achieves both confusion and diffusion characteristics.The encryption procedure starts by applying the DFT on the image then the DFT transformed image is scrambled using the CHM and the inverse DFT is applied to get the final-ly encrypted image.The decryption procedure follows the inverse procedure of encryption.The proposed DFT-based CHM image cryptography system is exam-ined using a set of security tests like statistical tests,entropy tests,differential tests,and sensitivity tests.The obtained results confirm and ensure the superiority of the proposed DFT-based CHM image cryptography system.These outcomes encourage the employment of the proposed DFT-based CHM image cryptography system in real-time image and video applications.展开更多
Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband ...Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband or detail value characteristics under healthy and various faulty operating conditions. The most reliable phase current among the three phase currents was selected using an approach that employs the fuzzy entropy measure. Data were trained with a neural network system, and the fault detection algorithm was verified using the unknown data. Results of the proposed approach based on Fourier and wavelet transformations indicate that the faults can be properly classified into six categories. The training error is 5.3×10-7, and the average test error is 0.103.展开更多
Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of conce...Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of concentration measurement is based on the Beer-Lambert law. Unlike the active measurement, for the passive remote sensing, in most cases, the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins. The gas cloud emission is almost equal to the background emission, thereby the emission of the gas cloud cannot be ignored. The concentration retrieval algorithm is quite different from the active measurement. In this paper, the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail, which involves radiative transfer model, radiometric calibration, absorption coefficient calculation, et al. The background spectrum has a broad feature, which is a slowly varying function of frequency. In this paper, the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm. No background spectra are required. Thus, this method allows mobile, real-time and fast measurements of gas clouds.展开更多
Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Se...Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Setaria italica have been chosen as suitable monocotyledonous models for plants possessing the C4 pathway of photosynthesis including sorghum,maize,sugarcane,switchgrass and Miscanthus×giganteus.Accurate partial least squares regression(PLSR)models to predict S.italica stem composition have been generated,based upon Fourier transform mid-infrared(FTIR)spectra and calibrated with wet chemistry determinations of ground S.italica stem material measured using a modified version of the US National Renewable Energy Laboratory(NREL)acid hydrolysis protocol.The models facilitated a high-throughput screening analysis for glucan,xylan,Klason lignin and acid soluble lignin(ASL)in a collection of 183 natural S.italica variants and clustered them into classes,some possessing unique chemotypes.The predictive models provide a highly efficient screening tool for large scale breeding programs aimed at identifying lines or mutants possessing unique cell wall chemotypes.Genes encoding key catalytic enzymes of the lignin biosynthesis pathway exhibit a high level of conservation with matching expression profiles,measured by RT-q PCR,among accessions of S.italica,which closely mirror profiles observed in the different developmental regions of an elongating internode of S.viridis by RNASeq.展开更多
基金supported by the National Nature Science Foundation of China(Grant Number:61962010).
文摘Deepfake-generated fake faces,commonly utilized in identity-related activities such as political propaganda,celebrity impersonations,evidence forgery,and familiar fraud,pose new societal threats.Although current deepfake generators strive for high realism in visual effects,they do not replicate biometric signals indicative of cardiac activity.Addressing this gap,many researchers have developed detection methods focusing on biometric characteristics.These methods utilize classification networks to analyze both temporal and spectral domain features of the remote photoplethysmography(rPPG)signal,resulting in high detection accuracy.However,in the spectral analysis,existing approaches often only consider the power spectral density and neglect the amplitude spectrum—both crucial for assessing cardiac activity.We introduce a novel method that extracts rPPG signals from multiple regions of interest through remote photoplethysmography and processes them using Fast Fourier Transform(FFT).The resultant time-frequency domain signal samples are organized into matrices to create Matrix Visualization Heatmaps(MVHM),which are then utilized to train an image classification network.Additionally,we explored various combinations of time-frequency domain representations of rPPG signals and the impact of attention mechanisms.Our experimental results show that our algorithm achieves a remarkable detection accuracy of 99.22%in identifying fake videos,significantly outperforming mainstream algorithms and demonstrating the effectiveness of Fourier Transform and attention mechanisms in detecting fake faces.
文摘Enhancing the security of the wireless communication is necessary to guarantee the reliable of the data transmission, due to the broadcast nature of wireless channels. In this paper, we provide a novel technology referred to as doubly multiple parameters weighted fractional Fourier transform(DMWFRFT), which can strengthen the physical layer security of wireless communication. This paper introduces the concept of DM-WFRFT based on multiple parameters WFRFT(MP-WFRFT), and then presents its four properties. Based on these properties, the parameters decryption probability is analyzed in terms of the number of parameters. The number of parameters for DM-WFRFT is more than that of the MP-WFRFT,which indicates that the proposed scheme can further strengthen the the physical layer security. Lastly, some numerical simulations are carried out to illustrate that the efficiency of proposed DM-WFRFT is related to preventing eavesdropping, and the effect of parameters variety on the system performance is associated with the bit error ratio(BER).
基金supported by the grants of National Natural Science Foundation of China(42374219,42127804)the Qilu Young Researcher Project of Shandong University.
文摘Radioheliographs can obtain solar images at high temporal and spatial resolution,with a high dynamic range.These are among the most important instruments for studying solar radio bursts,understanding solar eruption events,and conducting space weather forecasting.This study aims to explore the effective use of radioheliographs for solar observations,specifically for imaging coronal mass ejections(CME),to track their evolution and provide space weather warnings.We have developed an imaging simulation program based on the principle of aperture synthesis imaging,covering the entire data processing flow from antenna configuration to dirty map generation.For grid processing,we propose an improved non-uniform fast Fourier transform(NUFFT)method to provide superior image quality.Using simulated imaging of radio coronal mass ejections,we provide practical recommendations for the performance of radioheliographs.This study provides important support for the validation and calibration of radioheliograph data processing,and is expected to profoundly enhance our understanding of solar activities.
基金supported by the National Natural Science Foundation of China(61801503).
文摘Code acquisition is the kernel operation for signal synchronization in the spread-spectrum receiver.To reduce the computational complexity and latency of code acquisition,this paper proposes an efficient scheme employing sparse Fourier transform(SFT)and the relevant hardware architecture for field programmable gate array(FPGA)and application-specific integrated circuit(ASIC)implementation.Efforts are made at both the algorithmic level and the implementation level to enable merged searching of code phase and Doppler frequency without incurring massive hardware expenditure.Compared with the existing code acquisition approaches,it is shown from theoretical analysis and experimental results that the proposed design can shorten processing latency and reduce hardware complexity without degrading the acquisition probability.
文摘This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification.
文摘Many domains, including communication, signal processing, and image processing, use the Fourier Transform as a mathematical tool for signal analysis. Although it can analyze signals with steady and transitory properties, it has limits. The Wavelet Packet Decomposition (WPD) is a novel technique that we suggest in this study as a way to improve the Fourier Transform and get beyond these drawbacks. In this experiment, we specifically considered the utilization of Daubechies level 4 for the wavelet transformation. The choice of Daubechies level 4 was motivated by several reasons. Daubechies wavelets are known for their compact support, orthogonality, and good time-frequency localization. By choosing Daubechies level 4, we aimed to strike a balance between preserving important transient information and avoiding excessive noise or oversmoothing in the transformed signal. Then we compared the outcomes of our suggested approach to the conventional Fourier Transform using a non-stationary signal. The findings demonstrated that the suggested method offered a more accurate representation of non-stationary and transient signals in the frequency domain. Our method precisely showed a 12% reduction in MSE and a 3% rise in PSNR for the standard Fourier transform, as well as a 35% decrease in MSE and an 8% increase in PSNR for voice signals when compared to the traditional wavelet packet decomposition method.
文摘Let and denote respectively the functionswhere λ≥1, The author discusses the similarity transformation of the regularizing functionals of these functions and the similar property of their Fourier transformation.
文摘针对Chirp基调制信号在分数阶傅里叶变换域特征明显,信号周期易被检测等问题,提出一种能够实现多域隐蔽的低检测概率(low probability of detection,LPD)波形构造方法。该方法采用分数阶傅里叶变换跳频(fractional Fourier transform-frequency hopping,FrFT-FH)架构,在不改变Chirp信号扩频增益的前提下,通过时宽分割和重组(time width division and reorganization,TDR),降低信号在分数阶傅里叶变换域和周期域的能量聚敛特性。仿真结果表明,相较于现有LPD波形只能实现单一特征域隐蔽的问题,所提波形在不影响系统通信性能的前提下,面对频域检测、分数阶傅里叶变换域检测、周期域检测多种检测手段,在10 dB信噪比条件下的信号检测概率均低于0.2,满足系统在不同特征域下的LPD需求。
基金Project supported by the National Natural Science Foundation of China(Grant No.11775208)the Foundation for Young Talents at the College of Anhui Province,China(Grant Nos.gxyq2021210 and gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.KJ2020A0638 and 2022AH051586)。
文摘In our previous papers,the classical fractional Fourier transform theory was incorporated into the quantum theoretical system using the theoretical method of quantum optics,and the calculation produced quantum mechanical operators corresponding to the generation of fractional Fourier transform.The core function of the coordinate-momentum exchange operators in the addition law of fractional Fourier transform was analyzed too.In this paper,the bivariate operator Hermite polynomial theory and the technique of integration within an ordered product of operators(IWOP)are used to establish the entanglement fractional Fourier transform theory to the extent of quantum.A new function generating formula and an operator for generating quantum entangled fractional Fourier transform are obtained using the fractional Fourier transform relationship in a pair of conjugated entangled state representations.
基金This research was funded by Deanship of Scientific Research,Taif University Researches Supporting Project number(TURSP-2020/216),Taif University,Taif,Saudi Arabia.
文摘This paper introduces an efficient image cryptography system.The pro-posed image cryptography system is based on employing the two-dimensional(2D)chaotic henon map(CHM)in the Discrete Fourier Transform(DFT).The proposed DFT-based CHM image cryptography has two procedures which are the encryption and decryption procedures.In the proposed DFT-based CHM image cryptography,the confusion is employed using the CHM while the diffu-sion is realized using the DFT.So,the proposed DFT-based CHM image crypto-graphy achieves both confusion and diffusion characteristics.The encryption procedure starts by applying the DFT on the image then the DFT transformed image is scrambled using the CHM and the inverse DFT is applied to get the final-ly encrypted image.The decryption procedure follows the inverse procedure of encryption.The proposed DFT-based CHM image cryptography system is exam-ined using a set of security tests like statistical tests,entropy tests,differential tests,and sensitivity tests.The obtained results confirm and ensure the superiority of the proposed DFT-based CHM image cryptography system.These outcomes encourage the employment of the proposed DFT-based CHM image cryptography system in real-time image and video applications.
基金Project supported by the Second Stage of Brain Korea 21 Projects
文摘Fault detection of an induction motor was carried out using the information of the stator current. After synchronizing the actual data, Fourier and wavelet transformations were adopted in order to obtain the sideband or detail value characteristics under healthy and various faulty operating conditions. The most reliable phase current among the three phase currents was selected using an approach that employs the fuzzy entropy measure. Data were trained with a neural network system, and the fault detection algorithm was verified using the unknown data. Results of the proposed approach based on Fourier and wavelet transformations indicate that the faults can be properly classified into six categories. The training error is 5.3×10-7, and the average test error is 0.103.
基金Project supported by the National Natural Science Foundation of China (Grant No 083H311501)the National High Technology Research and Development Program of China (Grant No 073H3f1514)
文摘Passive Fourier transform infrared (FTIR) remote sensing measurement of chemical gas cloud is a vital technology. It takes an important part in many fields for the detection of released gases. The principle of concentration measurement is based on the Beer-Lambert law. Unlike the active measurement, for the passive remote sensing, in most cases, the difference between the temperature of the gas cloud and the brightness temperature of the background is usually a few kelvins. The gas cloud emission is almost equal to the background emission, thereby the emission of the gas cloud cannot be ignored. The concentration retrieval algorithm is quite different from the active measurement. In this paper, the concentration retrieval algorithm for the passive FTIR remote measurement of gas cloud is presented in detail, which involves radiative transfer model, radiometric calibration, absorption coefficient calculation, et al. The background spectrum has a broad feature, which is a slowly varying function of frequency. In this paper, the background spectrum is fitted with a polynomial by using the Levenberg-Marquardt method which is a kind of nonlinear least squares fitting algorithm. No background spectra are required. Thus, this method allows mobile, real-time and fast measurements of gas clouds.
文摘Cell wall composition in monocotyledonous grasses has been identified as a key area of research for developing better feedstocks for forage and biofuel production.Setaria viridis and its close domesticated relative Setaria italica have been chosen as suitable monocotyledonous models for plants possessing the C4 pathway of photosynthesis including sorghum,maize,sugarcane,switchgrass and Miscanthus×giganteus.Accurate partial least squares regression(PLSR)models to predict S.italica stem composition have been generated,based upon Fourier transform mid-infrared(FTIR)spectra and calibrated with wet chemistry determinations of ground S.italica stem material measured using a modified version of the US National Renewable Energy Laboratory(NREL)acid hydrolysis protocol.The models facilitated a high-throughput screening analysis for glucan,xylan,Klason lignin and acid soluble lignin(ASL)in a collection of 183 natural S.italica variants and clustered them into classes,some possessing unique chemotypes.The predictive models provide a highly efficient screening tool for large scale breeding programs aimed at identifying lines or mutants possessing unique cell wall chemotypes.Genes encoding key catalytic enzymes of the lignin biosynthesis pathway exhibit a high level of conservation with matching expression profiles,measured by RT-q PCR,among accessions of S.italica,which closely mirror profiles observed in the different developmental regions of an elongating internode of S.viridis by RNASeq.