目的研究基于近红外光谱模型转移的牛奶蛋白检测方法。方法分别采用实验室与在线检测近红外光谱仪采集生产过程中原料奶样品的近红外光谱,研究斜率截距法(slope/bias,S/B)、分段直接标准化(piecewise direct standardization,PDS)算法、...目的研究基于近红外光谱模型转移的牛奶蛋白检测方法。方法分别采用实验室与在线检测近红外光谱仪采集生产过程中原料奶样品的近红外光谱,研究斜率截距法(slope/bias,S/B)、分段直接标准化(piecewise direct standardization,PDS)算法、Shenk’s方法在不同仪器测量光谱之间模型转移应用,优化模型参数,提高实验室仪器建立的校正模型应用于在线光谱仪器的预测精度。结果经过Shenk’s算法转移,主从机的光谱平均差异降低为0.0075,光谱校正率达到98.95%。利用模型转移方法与偏最小二乘模型结合,将实验室分析光谱仪建立的模型用于生产在线光谱仪测量光谱预测,显著提高了牛奶中蛋白质含量预测准确度,不同仪器之间模型预测相对均方根误差从5.52%下降到2.03%。结论本研究的方法实现了实验室分析与在线检测仪器测量光谱及定量分析模型转移共享,为近红外在线检测的智能化改进提供了基础。展开更多
为满足不同种类食品对大豆分离蛋白(soybean protein isolate,SPI)不同功能性的需求,本研究利用红外光谱快速采集70组不同pH值处理后SPI的数据,探讨pH值变化对SPI结构含量的影响。使用均值中心化、多元散射校正、标准正态变量变换和归...为满足不同种类食品对大豆分离蛋白(soybean protein isolate,SPI)不同功能性的需求,本研究利用红外光谱快速采集70组不同pH值处理后SPI的数据,探讨pH值变化对SPI结构含量的影响。使用均值中心化、多元散射校正、标准正态变量变换和归一化算法对红外光谱数据进行预处理,基于二维相关红外光谱提取特征波段,再利用偏最小二乘(partial least square,PLS)法和算术优化算法-随机森林(arithmetic optimization algorithm-random forests,AOA-RF)建立不同pH值条件下SPI结构及含量的预测模型。结果表明,经均值中心化和多元散射校正结合处理后,α-螺旋、β-折叠、β-转角和无规卷曲模型的相对标准偏差分别为1.29%、1.60%、1.37%、7.28%,两者结合对光谱数据的预处理效果最佳。预测α-螺旋和β-折叠含量最优模型为AOA-RF(特征波段),校正集决定系数为0.9350和0.9266,预测集决定系数为0.8568和0.8701;预测β-转角和无规卷曲含量最优模型为PLS(特征波段),校正集决定系数为0.9154和0.8817,预测集决定系数为0.8913和0.7843。本研究结果可为工业生产过程中产品质量快速检测和工艺条件控制提供理论支撑。展开更多
文摘目的研究基于近红外光谱模型转移的牛奶蛋白检测方法。方法分别采用实验室与在线检测近红外光谱仪采集生产过程中原料奶样品的近红外光谱,研究斜率截距法(slope/bias,S/B)、分段直接标准化(piecewise direct standardization,PDS)算法、Shenk’s方法在不同仪器测量光谱之间模型转移应用,优化模型参数,提高实验室仪器建立的校正模型应用于在线光谱仪器的预测精度。结果经过Shenk’s算法转移,主从机的光谱平均差异降低为0.0075,光谱校正率达到98.95%。利用模型转移方法与偏最小二乘模型结合,将实验室分析光谱仪建立的模型用于生产在线光谱仪测量光谱预测,显著提高了牛奶中蛋白质含量预测准确度,不同仪器之间模型预测相对均方根误差从5.52%下降到2.03%。结论本研究的方法实现了实验室分析与在线检测仪器测量光谱及定量分析模型转移共享,为近红外在线检测的智能化改进提供了基础。
文摘为满足不同种类食品对大豆分离蛋白(soybean protein isolate,SPI)不同功能性的需求,本研究利用红外光谱快速采集70组不同pH值处理后SPI的数据,探讨pH值变化对SPI结构含量的影响。使用均值中心化、多元散射校正、标准正态变量变换和归一化算法对红外光谱数据进行预处理,基于二维相关红外光谱提取特征波段,再利用偏最小二乘(partial least square,PLS)法和算术优化算法-随机森林(arithmetic optimization algorithm-random forests,AOA-RF)建立不同pH值条件下SPI结构及含量的预测模型。结果表明,经均值中心化和多元散射校正结合处理后,α-螺旋、β-折叠、β-转角和无规卷曲模型的相对标准偏差分别为1.29%、1.60%、1.37%、7.28%,两者结合对光谱数据的预处理效果最佳。预测α-螺旋和β-折叠含量最优模型为AOA-RF(特征波段),校正集决定系数为0.9350和0.9266,预测集决定系数为0.8568和0.8701;预测β-转角和无规卷曲含量最优模型为PLS(特征波段),校正集决定系数为0.9154和0.8817,预测集决定系数为0.8913和0.7843。本研究结果可为工业生产过程中产品质量快速检测和工艺条件控制提供理论支撑。