期刊文献+
共找到5,398篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Simulation of Dam-Break Flows Using Radial Basis Functions: Application to Urban Flood Inundation
1
作者 Abdoulhafar Halassi Bacar Said Charriffaini Rawhoudine 《American Journal of Computational Mathematics》 2024年第3期318-332,共15页
Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes... Dam-break flows pose significant threats to urban areas due to their potential for causing rapid and extensive flooding. Traditional numerical methods for simulating these events struggle with complex urban landscapes. This paper presents an alternative approach using Radial Basis Functions to simulate dam-break flows and their impact on urban flood inundation. The proposed method adapts a new strategy based on Particle Swarm Optimization for variable shape parameter selection on meshfree formulation to enhance the numerical stability and convergence of the simulation. The method’s accuracy and efficiency are demonstrated through numerical experiments, including well-known partial and circular dam-break problems and an idealized city with a single building, highlighting its potential as a valuable tool for urban flood risk management. 展开更多
关键词 Dam-Break Flows Numerical Simulation Shallow Water Equations Radial basis functions Urban Flood Inundation
下载PDF
A Radial Basis Function Method with Improved Accuracy for Fourth Order Boundary Value Problems
2
作者 Scott A. Sarra Derek Musgrave +1 位作者 Marcus Stone Joseph I. Powell 《Journal of Applied Mathematics and Physics》 2024年第7期2559-2573,共15页
Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with... Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used. 展开更多
关键词 Numerical Partial Differential Equations Boundary Value Problems Radial basis function Methods Ghost Points Variable Shape Parameter Least Squares
下载PDF
Analysis of radial basis function interpolation approach 被引量:4
3
作者 邹友龙 胡法龙 +3 位作者 周灿灿 李潮流 李长喜 Keh-Jim Dunn 《Applied Geophysics》 SCIE CSCD 2013年第4期397-410,511,共15页
The radial basis function (RBF) interpolation approach proposed by Freedman is used to solve inverse problems encountered in well-logging and other petrophysical issues. The approach is to predict petrophysical prop... The radial basis function (RBF) interpolation approach proposed by Freedman is used to solve inverse problems encountered in well-logging and other petrophysical issues. The approach is to predict petrophysical properties in the laboratory on the basis of physical rock datasets, which include the formation factor, viscosity, permeability, and molecular composition. However, this approach does not consider the effect of spatial distribution of the calibration data on the interpolation result. This study proposes a new RBF interpolation approach based on the Freedman's RBF interpolation approach, by which the unit basis functions are uniformly populated in the space domain. The inverse results of the two approaches are comparatively analyzed by using our datasets. We determine that although the interpolation effects of the two approaches are equivalent, the new approach is more flexible and beneficial for reducing the number of basis functions when the database is large, resulting in simplification of the interpolation function expression. However, the predicted results of the central data are not sufficiently satisfied when the data clusters are far apart. 展开更多
关键词 Inverse problems radial basis function interpolation new approach
下载PDF
New Structural Self-Organizing Fuzzy CMAC with Basis Functions
4
作者 何超 徐立新 +1 位作者 董宁 张宇河 《Journal of Beijing Institute of Technology》 EI CAS 2001年第3期298-305,共8页
To improve the nonlinear approximating ability of cerebellar model articulation controller(CMAC), by introducing the Gauss basis functions and the similarity measure based addressing scheme, a new kind of fuzzy CMAC... To improve the nonlinear approximating ability of cerebellar model articulation controller(CMAC), by introducing the Gauss basis functions and the similarity measure based addressing scheme, a new kind of fuzzy CMAC with Gauss basis functions(GFCMAC) was presented. Moreover, based upon the improvement of the self organizing feature map algorithm of Kohonen, the structural self organizing algorithm for GFCMAC(SOGFCMAC) was proposed. Simulation results show that adopting the Gauss basis functions and fuzzy techniques can remarkably improve the nonlinear approximating capacity of CMAC. Compared with the traditional CMAC,CMAC with general basis functions and fuzzy CMAC(FCMAC), SOGFCMAC has the obvious advantages in the aspects of the convergent speed, approximating accuracy and structural self organizing. 展开更多
关键词 CMAC FUZZY basis functions self organizing algorithm neural networks
下载PDF
An Evolutionary Programming Based on Hidden Neuron Modifiable Radial Basis Function Networks
5
作者 陈向东 唐景山 宋爱国 《Journal of Southeast University(English Edition)》 EI CAS 2000年第2期36-41,共6页
In this paper, an improved radial basis function networks named hidden neuron modifiable radial basis function (HNMRBF) networks is proposed for target classification, and evolutionary programming (EP) is used as a le... In this paper, an improved radial basis function networks named hidden neuron modifiable radial basis function (HNMRBF) networks is proposed for target classification, and evolutionary programming (EP) is used as a learning algorithm to determine and modify the hidden neuron of HNMRBF nets. The result of passive sonar target classification shows that HNMRBF nets can effectively solve the problem of traditional neural networks, i. e. learning new target patterns on line will cause forgetting of the old patterns. 展开更多
关键词 target recognition radial basis function evolutionary programming
下载PDF
Application of Radial Basis Function Network in Sensor Failure Detection
6
作者 钮永胜 赵新民 《Journal of Beijing Institute of Technology》 EI CAS 1999年第2期70-76,共7页
Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor sig... Aim To detect sensor failure in control system using a single sensor signal. Methods A neural predictor was designed based on a radial basis function network(RBFN), and the neural predictor learned the sensor signal on line with a hybrid algorithm composed of n means clustering and Kalman filter and then gave the estimation of the sensor signal at the next step. If the difference between the estimation and the actural values of the sensor signal exceeded a threshold, the sensor could be declared to have a failure. The choice of the failure detection threshold depends on the noise variance and the possible prediction error of neural predictor. Results and Conclusion\ The computer simulation results show the proposed method can detect sensor failure correctly for a gyro in an automotive engine. 展开更多
关键词 sensor failure failure detection radial basis function network(BRFN) on line learning
下载PDF
SOME PROBLEMS WITH THE METHOD OF FUNDAMENTAL SOLUTION USING RADIAL BASIS FUNCTIONS 被引量:9
7
作者 Wang Hui Qin Qinghua 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第1期21-29,共9页
The present work describes the application of the method of fundamental solutions (MFS) along with the analog equation method (AEM) and radial basis function (RBF) approximation for solving the 2D isotropic and ... The present work describes the application of the method of fundamental solutions (MFS) along with the analog equation method (AEM) and radial basis function (RBF) approximation for solving the 2D isotropic and anisotropic Helmholtz problems with different wave numbers. The AEM is used to convert the original governing equation into the classical Poisson's equation, and the MFS and RBF approximations are used to derive the homogeneous and particular solutions, respectively. Finally, the satisfaction of the solution consisting of the homogeneous and particular parts to the related governing equation and boundary conditions can produce a system of linear equations, which can be solved with the singular value decomposition (SVD) technique. In the computation, such crucial factors related to the MFS-RBF as the location of the virtual boundary, the differential and integrating strategies, and the variation of shape parameters in multi-quadric (MQ) are fully analyzed to provide useful reference. 展开更多
关键词 meshless method analog equation method method of fundamental solution radial basis function singular value decomposition Helmholtz equation
下载PDF
Comparison Between Radial Basis Function Neural Network and Regression Model for Estimation of Rice Biophysical Parameters Using Remote Sensing 被引量:10
8
作者 YANG Xiao-Hua WANG Fu-Min +4 位作者 HUANG Jing-Feng WANG Jian-Wen WANG Ren-Chao SHEN Zhang-Quan WANG Xiu-Zhen 《Pedosphere》 SCIE CAS CSCD 2009年第2期176-188,共13页
The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and ra... The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets. Hyperspectral reflectance (350 to 2500 nm) data were recorded at two different rice sites in two experiment fields with two cultivars, three nitrogen treatments and one plant density (45 plants m^-2). Stepwise multivariable regression model (SMR) and RBF were used to compare their predictability for the leaf area index (LAI) and green leaf chlorophyll density (GLCD) of rice based on reflectance (R) and its three different transformations, the first derivative reflectance (D1), the second derivative reflectance (D2) and the log-transformed reflectance (LOG). GRNN based on D1 was the best model for the prediction of rice LAI and CLCD. The relationships between different transformations of reflectance and rice parameters could be further improved when RBF was employed. Owing to its strong capacity for nonlinear mapping and good robustness, GRNN could maximize the sensitivity to chlorophyll content using D1. It is concluded that RBF may provide a useful exploratory and predictive tool for the estimation of rice biophysical parameters. 展开更多
关键词 biophysical parameters radial basis function regression model remote sensing RICE
下载PDF
MESHLESS METHOD BASED ON COLLOCATION WITH CONSISTENT COMPACTLY SUPPORTED RADIAL BASIS FUNCTIONS 被引量:3
9
作者 宋康祖 张雄 陆明万 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第5期551-557,共7页
Based on our previous study,the accuracy of derivatives of interpolating functions are usually very poor near the boundary of domain when Compactly Supported Radial Basis Functions (CSRBFs)are used,so that it could re... Based on our previous study,the accuracy of derivatives of interpolating functions are usually very poor near the boundary of domain when Compactly Supported Radial Basis Functions (CSRBFs)are used,so that it could result in significant error in solving partial differential equations with Neumann boundary conditions.To overcome this drawback,the Consistent Compactly Supported Radial Basis Functions(CCSRBFs)are developed,which satisfy the predetermined consistency con- ditions.Meshless method based on point collocation with CCSRBFs is developed for solving partial differential equations.Numerical studies show that the proposed method improves the accuracy of approximation significantly. 展开更多
关键词 radial basis function COLLOCATION MESHLESS
下载PDF
Application of the optimal Latin hypercube design and radial basis function network to collaborative optimization 被引量:16
10
作者 ZHAO Min CUI Wei-cheng 《Journal of Marine Science and Application》 2007年第3期24-32,共9页
Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collabora... Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method. 展开更多
关键词 multidisciplinary design optimization (MDO) collaborative optimization (CO) optimal Latin hypercube design radial basis function network APPROXIMATION
下载PDF
Band structures of transverse waves in nanoscale multilayered phononic crystals with nonlocal interface imperfections by using the radial basis function method 被引量:2
11
作者 Zhizhong Yan Chunqiu Wei Chuanzeng Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第2期415-428,共14页
A radial basis function collocation method based on the nonlocal elastic continuum theory is developed to compute the band structures of nanoscale multilayered phononic crystals. The effects of nonlocal imperfect inte... A radial basis function collocation method based on the nonlocal elastic continuum theory is developed to compute the band structures of nanoscale multilayered phononic crystals. The effects of nonlocal imperfect interfaces on band structures of transverse waves propagating obliquely or vertically in the system are studied. The correctness of the present method is verified by comparing the numerical results with those obtained by applying the transfer matrix method in the case of nonlocal perfect interface. Furthermore, the influences of the nanoscale size, the impedance ratio and the incident angle on the cut-off frequency and band structures are investigated and discussed in detail. Numerical results show that the nonlocal interface imperfections have significant effects on the band structures in the macroscopic and microscopic scale. 展开更多
关键词 Radial basis function Phononic crystal NANOSCALE Band structure Nonlocal imperfect interface
下载PDF
Synchronization of chaos using radial basis functions neural networks 被引量:2
12
作者 Ren Haipeng Liu Ding 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期83-88,100,共7页
The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response syst... The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method. 展开更多
关键词 Chaos synchronization Radial basis function neural networks Model error Parameter perturbation Measurement noise.
下载PDF
Application of Near Infrared Diffuse Reflectance Spectroscopy with Radial Basis Function Neural Network to Determination of Rifampincin Isoniazid and Pyrazinamide Tablets 被引量:3
13
作者 DU Lin-na WU Li-hang +5 位作者 LU Jia-hui GUO Wei-liang MENG Qing-fan JIANG Chao-jun SHEN Si-le TENG Li-rong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第5期518-523,共6页
Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse r... Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse reflectance spectra for determining the contents of rifampincin(RMP),isoniazid(INH)and pyrazinamide(PZA)in rifampicin isoniazid and pyrazinamide tablets.Savitzky-Golay smoothing,first derivative,second derivative,fast Fourier transform(FFT)and standard normal variate(SNV)transformation methods were applied to pretreating raw NIR diffuse reflectance spectra.The raw and pretreated spectra were divided into several regions,depending on the average spectrum and RSD spectrum.Principal component analysis(PCA)method was used for analyzing the raw and pretreated spectra in different regions in order to reduce the dimensions of input data.The optimum spectral regions and the models' parameters were chosen by comparing the root mean square error of cross-validation(RMSECV)values which were obtained by leave-one-out cross-validation method.The RMSECV values of the RBFNN models for determining the contents of RMP,INH and PZA were 0.00288,0.00226 and 0.00341,respectively.Using these models for predicting the contents of INH,RMP and PZA in prediction set,the RMSEP values were 0.00266,0.00227 and 0.00411,respectively.These results are better than those obtained from PLS models and BPNN models.With additional advantages of fast calculation speed and less dependence on the initial conditions,RBFNN is a suitable tool to model complex systems. 展开更多
关键词 Rifampicin isoniazid and pyrazinamide tablets NIR diffuse reflectance spectroscopy Partial least square Back-propagation neural network Radial basis function neural network
下载PDF
An Adaptive Identification and Control SchemeUsing Radial Basis Function Networks 被引量:2
14
作者 Chen Zengqiang He Jiangfeng Yuan Zhuzhi (Department of Computer and System Science, Nankai University, Tianjin 300071, P. R. China)(Received July 12, 1998) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第1期54-61,共8页
In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an... In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an adaptive fuzzy generalized learning vector quantization (AFGLVQ) technique and recursive least squares algorithm with variable forgetting factor (VRLS). The AFGLVQ adjusts the centers of the RBF while the VRLS updates the connection weights of the network. The identification algorithm has the properties of rapid convergence and persistent adaptability that make it suitable for real-time control. Secondly, on the basis of the one-step ahead RBF predictor, the control law is optimized iteratively through a numerical stable Davidon's least squares-based (SDLS) minimization approach. Four nonlinear examples are simulated to demonstrate the effectiveness of the identification and control algorithms. 展开更多
关键词 Neural networks Adaptive control Nonlinear control Radial basis function networks Recursive least squares.
下载PDF
Adaptive integral dynamic surface control based on fully tuned radial basis function neural network 被引量:2
15
作者 Li Zhou Shumin Fei Changsheng Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1072-1078,共7页
An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wid... An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach. 展开更多
关键词 adaptive control integral dynamic surface control fully tuned radial basis function neural network.
下载PDF
Application of principal component-radial basis function neural networks (PC-RBFNN) for the detection of water-adulterated bayberry juice by near-infrared spectroscopy 被引量:5
16
作者 Li-juan XIE Xing-qian YE Dong-hong LIU Yi-bin YING 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2008年第12期982-989,共8页
Near-infrared (NIR) spectroscopy combined with chemometrics techniques was used to classify the pure bayberry juice and the one adulterated with 10% (w/w) and 20% (w/w) water. Principal component analysis (PCA) was ap... Near-infrared (NIR) spectroscopy combined with chemometrics techniques was used to classify the pure bayberry juice and the one adulterated with 10% (w/w) and 20% (w/w) water. Principal component analysis (PCA) was applied to reduce the dimensions of spectral data, give information regarding a potential capability of separation of objects, and provide principal component (PC) scores for radial basis function neural networks (RBFNN). RBFNN was used to detect bayberry juice adulterant. Multiplicative scatter correction (MSC) and standard normal variate (SNV) transformation were used to preprocess spectra. The results demonstrate that PC-RBFNN with optimum parameters can separate pure bayberry juice samples from water-adulterated bayberry at a recognition rate of 97.62%, but cannot clearly detect water levels in the adulterated bayberry juice. We conclude that NIR technology can be successfully applied to detect water-adulterated bayberry juice. 展开更多
关键词 Near-infrared (NIR) spectroscopy Principal component-radial basis function neural networks (PC-RBFNN) Bayberry juice ADULTERATION Chemometrics technique
下载PDF
DETERMINING THE STRUCTURES AND PARAMETERS OF RADIAL BASIS FUNCTION NEURAL NETWORKS USING IMPROVED GENETIC ALGORITHMS 被引量:1
17
作者 Meiqin Liu Jida Chen 《Journal of Central South University》 SCIE EI CAS 1998年第2期68-73,共6页
The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error t... The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks. 展开更多
关键词 RADIAL basis function NEURAL network GENETIC algorithms Akaike′s information CRITERION OVERFITTING
下载PDF
Application of radial basis functions to evolution equations arising in image segmentation 被引量:1
18
作者 李淑玲 李小林 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期583-588,共6页
In this paper, radial basis functions are used to obtain the solution of evolution equations which appear in variational level set method based image segmentation. In this method, radial basis functions are used to in... In this paper, radial basis functions are used to obtain the solution of evolution equations which appear in variational level set method based image segmentation. In this method, radial basis functions are used to interpolate the implicit level set function of the evolution equation with a high level of accuracy and smoothness. Then, the original initial value problem is discretized into an interpolation problem. Accordingly, the evolution equation is converted into a set of coupled ordinary differential equations, and a smooth evolution can be retained. Compared with finite difference scheme based level set approaches, the complex and costly re-initialization procedure is unnecessary. Numerical examples are also given to show the efficiency of the method. 展开更多
关键词 radial basis functions evolution equations image segmentation RE-INITIALIZATION
下载PDF
HERMITE—BIRKHOFF INTERPOLATION OF SCATTERED DATA BY RADIAL BASIS FUNCTIONS 被引量:6
19
作者 吴宗敏 《Analysis in Theory and Applications》 1992年第2期1-10,共10页
For Hermite-Birkhoff interpolation of scattered multidumensional data by radial basis function (?),existence and characterization theorems and a variational principle are proved. Examples include (?)(r)=r^b,Duchon'... For Hermite-Birkhoff interpolation of scattered multidumensional data by radial basis function (?),existence and characterization theorems and a variational principle are proved. Examples include (?)(r)=r^b,Duchon's thin-plate splines,Hardy's multiquadrics,and inverse multiquadrics. 展开更多
关键词 HERMITE BIRKHOFF INTERPOLATION OF SCATTERED DATA BY RADIAL basis functionS
下载PDF
Wear State Recognition of Drills Based on K-means Cluster and Radial Basis Function Neural Network 被引量:2
20
作者 Xu Yang 《International Journal of Automation and computing》 EI 2010年第3期271-276,共6页
Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, d... Drill wear not only affects the surface smoothness of the hole, but also influences the life of the drill. Drill wear state recognition is important in the manufacturing process, which consists of two steps: first, decomposing cutting torque components from the original signals by wavelet packet decomposition (WPD); second, extracting wavelet coefficients of different wear states (i.e., slight, normal, or severe wear) with signal features adapting to Welch spectrum. Finally, monitoring and recognition of the feature vectors of cutting torque signal are performed by using the K-means cluster and radial basis function neural network (RBFNN). The experiments on different tool wears of the multivariable features reveal that the results of monitoring and recognition are significant and effective. 展开更多
关键词 Drill wear state recognition cutting torque signals wavelet packet decomposition (WPD) Welch spectrum energy K-means cluster radial basis function neural network
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部