A Fourier-synthesized 40-GHz optical pulse train was successfully synchronized to an 8-GHz optical clock generated from a mode-locked fiber ring laser. The measured timing jitter of the synchronization was 0.43 ps.
We present exact bright multi-soliton solutions of a generalized nonautonomous nonlinear Schroinger equation with time-and space-dependent distributed coefficients and an external potential which describes a pulse pro...We present exact bright multi-soliton solutions of a generalized nonautonomous nonlinear Schroinger equation with time-and space-dependent distributed coefficients and an external potential which describes a pulse propagating in nonlinear media when its transverse and longitudinal directions are nonuniformly distributed.Such solutions exist in certain constraint conditions on the coefficients depicting dispersion,nonlinearity,and gain(loss).Various shapes of bright solitons and interesting interactions between two solitons are observed.Physical applications of interest to the field and stability of the solitons are discussed.展开更多
文摘A Fourier-synthesized 40-GHz optical pulse train was successfully synchronized to an 8-GHz optical clock generated from a mode-locked fiber ring laser. The measured timing jitter of the synchronization was 0.43 ps.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10875106 and 11175158)
文摘We present exact bright multi-soliton solutions of a generalized nonautonomous nonlinear Schroinger equation with time-and space-dependent distributed coefficients and an external potential which describes a pulse propagating in nonlinear media when its transverse and longitudinal directions are nonuniformly distributed.Such solutions exist in certain constraint conditions on the coefficients depicting dispersion,nonlinearity,and gain(loss).Various shapes of bright solitons and interesting interactions between two solitons are observed.Physical applications of interest to the field and stability of the solitons are discussed.