In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal...In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.展开更多
This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classificati...This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classification results are presented, and some examples are given to show the main reduction procedure.展开更多
Let G he a hounded domain in E Consider the following quasi-linear elliptic equationAlthough the houndedness of generalized solutions of the equation is proved for very general structural conditions, it does not suppl...Let G he a hounded domain in E Consider the following quasi-linear elliptic equationAlthough the houndedness of generalized solutions of the equation is proved for very general structural conditions, it does not supply a priori estimate for maximum modulus of solutions. In this paper an estimate to the maximum modulus is made firstly for a special case of quasi-linear elliptic equations, i.e. the A and B satisfy the following structural conditions展开更多
In this paper, we consider the following fourth-order equation of Kirchhoff type<br /> <p> <img src="Edit_bcc9844d-7cbc-494d-90c4-d75364de5658.bmp" alt="" /> </p> <p> ...In this paper, we consider the following fourth-order equation of Kirchhoff type<br /> <p> <img src="Edit_bcc9844d-7cbc-494d-90c4-d75364de5658.bmp" alt="" /> </p> <p> where <i>a</i>, <i>b</i> > 0 are constants, 3 < <i>p</i> < 5, <i>V</i> ∈ <i>C</i> (R<sup>3</sup>, R);Δ<sup>2</sup>: = Δ (Δ) is the biharmonic operator. By using Symmetric Mountain Pass Theorem and variational methods, we prove that the above equation admits infinitely many high energy solutions under some sufficient assumptions on <i>V</i> (<i>x</i>). We make some assumptions on the potential <i>V</i> (<i>x</i>) to solve the difficulty of lack of compactness of the Sobolev embedding. Our results improve some related results in the literature. </p>展开更多
In this paper,we study three families of C^(m)(m=0,1,2)finite element methods for one dimensional fourth-order equations.They include C^(0)and C1 Galerkin methods and a C^(2)-C^(0)Petrov-Galerkin method.Existence,uniq...In this paper,we study three families of C^(m)(m=0,1,2)finite element methods for one dimensional fourth-order equations.They include C^(0)and C1 Galerkin methods and a C^(2)-C^(0)Petrov-Galerkin method.Existence,uniqueness and optimal error estimates of the numerical solution are established.A unified approach is proposed to study the superconvergence property of these methods.We prove that,for kth-order elements,the C^(0)and C1 finite element solutions and their derivative are superconvergent with rate h2k−2(k≥3)at all mesh nodes;while the solution of the C^(2)-C^(0)Petrov-Galerkin method and its first-and second-order derivatives are superconvergent with rate h^(2k−4)(k≥5)at all mesh nodes.Furthermore,interior superconvergence points for the l-th(0≤l≤m+1)derivate approximations are also discovered,which are identified as roots of special Jacobi polynomials,Lobatto points,and Gauss points.As a by-product,we prove that the C^(m)finite element solution is superconvergent towards a particular Jacobi projection of the exact solution in the Hl(0≤l≤m+1)norms.All theoretical findings are confirmed by numerical experiments.展开更多
In this paper,we study the following quasi-linear elliptic equation:■where Ω?R^(N) is a bounded domain,λ>0 is a parameter.The function ψ(|t|)t is the subcritical term,and φ(|t|)t is the critical Orlicz-Sobolev...In this paper,we study the following quasi-linear elliptic equation:■where Ω?R^(N) is a bounded domain,λ>0 is a parameter.The function ψ(|t|)t is the subcritical term,and φ(|t|)t is the critical Orlicz-Sobolev growth term with respect to φ.Under appropriate conditions on φ,ψ and φ,we prove the existence of infinitely many weak solutions for quasi-linear elliptic equation,for λ∈(0,λ_(0)),where λ_(0)> 0 is a fixed constant.展开更多
Interface problems for second order quasi-linear elliptic partial differential equations in a two-dimensional space are studied.We prove that each weak solution can be decomposed into two parts near singular points,on...Interface problems for second order quasi-linear elliptic partial differential equations in a two-dimensional space are studied.We prove that each weak solution can be decomposed into two parts near singular points,one of which is a finite sum of functions of the form cr~α log^m r(?)(θ),where the coefficients c depend on the H^1-norm of the solution,the C^(0,δ)-norm of the solution,and the equation only;and the other one of which is a regular one,the norm of which is also estimated.展开更多
This paper is concerned with the existence of nontrivial solutions for the following fourth-order equations of Kirchhoff type {Δ^2u-(a+b∫R^N|▽u|^2dx)Δu+λv(x)u=f(x,u),x∈R^N,u∈H^2(R^N),where a,b are p...This paper is concerned with the existence of nontrivial solutions for the following fourth-order equations of Kirchhoff type {Δ^2u-(a+b∫R^N|▽u|^2dx)Δu+λv(x)u=f(x,u),x∈R^N,u∈H^2(R^N),where a,b are positive constants, λ≥ 1 is a parameter, and the nonlinearity f is either superlinear or sublinear at infinity in u. With the help of the variational methods, we obtain the existence and multiplicity results in the working spaces.展开更多
We study a functional modelling the progressive lens design,which is a combination of Willmore functional and total Gauss curvature.First,we prove the existence for the minimizers of this class of functionals among th...We study a functional modelling the progressive lens design,which is a combination of Willmore functional and total Gauss curvature.First,we prove the existence for the minimizers of this class of functionals among the class of revolution surfaces rotated by the curves y=f(x)about the x-axis.Then,choosing such a minimiser as background surfaces to approximate the functional by a quadratic functional,we prove the existence and uniqueness of the solution to the Euler-Lagrange equation for the quadratic functionals.Our results not only provide a strictly mathematical proof for numerical methods,but also give a more reasonable and more extensive choice for the background surfaces.展开更多
文摘In this paper we consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the energy estimates of the solutionand its derivatives and construct the formal asymptotic solution by Lyuternik- Vishik 's method. Finally, by means of the energy estimates we obtain the bound of the remainder of the asymptotic solution.
基金Supported by the National Natural Science Foundation of China under Grant No.10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.SJ08A05
文摘This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classification results are presented, and some examples are given to show the main reduction procedure.
文摘Let G he a hounded domain in E Consider the following quasi-linear elliptic equationAlthough the houndedness of generalized solutions of the equation is proved for very general structural conditions, it does not supply a priori estimate for maximum modulus of solutions. In this paper an estimate to the maximum modulus is made firstly for a special case of quasi-linear elliptic equations, i.e. the A and B satisfy the following structural conditions
文摘In this paper, we consider the following fourth-order equation of Kirchhoff type<br /> <p> <img src="Edit_bcc9844d-7cbc-494d-90c4-d75364de5658.bmp" alt="" /> </p> <p> where <i>a</i>, <i>b</i> > 0 are constants, 3 < <i>p</i> < 5, <i>V</i> ∈ <i>C</i> (R<sup>3</sup>, R);Δ<sup>2</sup>: = Δ (Δ) is the biharmonic operator. By using Symmetric Mountain Pass Theorem and variational methods, we prove that the above equation admits infinitely many high energy solutions under some sufficient assumptions on <i>V</i> (<i>x</i>). We make some assumptions on the potential <i>V</i> (<i>x</i>) to solve the difficulty of lack of compactness of the Sobolev embedding. Our results improve some related results in the literature. </p>
基金This work is supported in part by the National Natural Science Foundation of China under grants No.12271049,12101035,12131005,U1930402.
文摘In this paper,we study three families of C^(m)(m=0,1,2)finite element methods for one dimensional fourth-order equations.They include C^(0)and C1 Galerkin methods and a C^(2)-C^(0)Petrov-Galerkin method.Existence,uniqueness and optimal error estimates of the numerical solution are established.A unified approach is proposed to study the superconvergence property of these methods.We prove that,for kth-order elements,the C^(0)and C1 finite element solutions and their derivative are superconvergent with rate h2k−2(k≥3)at all mesh nodes;while the solution of the C^(2)-C^(0)Petrov-Galerkin method and its first-and second-order derivatives are superconvergent with rate h^(2k−4)(k≥5)at all mesh nodes.Furthermore,interior superconvergence points for the l-th(0≤l≤m+1)derivate approximations are also discovered,which are identified as roots of special Jacobi polynomials,Lobatto points,and Gauss points.As a by-product,we prove that the C^(m)finite element solution is superconvergent towards a particular Jacobi projection of the exact solution in the Hl(0≤l≤m+1)norms.All theoretical findings are confirmed by numerical experiments.
基金supported by National Natural Science Foundation of China (No.12101192, 11571339, 11871195,11301153)Key Scientific Research Projects of Higher Education Institutions in Henan Province(No.20B110004)。
文摘In this paper,we study the following quasi-linear elliptic equation:■where Ω?R^(N) is a bounded domain,λ>0 is a parameter.The function ψ(|t|)t is the subcritical term,and φ(|t|)t is the critical Orlicz-Sobolev growth term with respect to φ.Under appropriate conditions on φ,ψ and φ,we prove the existence of infinitely many weak solutions for quasi-linear elliptic equation,for λ∈(0,λ_(0)),where λ_(0)> 0 is a fixed constant.
基金supported by the China State Major Key Project for Basic Researchesthe Science Fund of the Ministry of Education of China
文摘Interface problems for second order quasi-linear elliptic partial differential equations in a two-dimensional space are studied.We prove that each weak solution can be decomposed into two parts near singular points,one of which is a finite sum of functions of the form cr~α log^m r(?)(θ),where the coefficients c depend on the H^1-norm of the solution,the C^(0,δ)-norm of the solution,and the equation only;and the other one of which is a regular one,the norm of which is also estimated.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 11371282, 11571259).
文摘This paper is concerned with the existence of nontrivial solutions for the following fourth-order equations of Kirchhoff type {Δ^2u-(a+b∫R^N|▽u|^2dx)Δu+λv(x)u=f(x,u),x∈R^N,u∈H^2(R^N),where a,b are positive constants, λ≥ 1 is a parameter, and the nonlinearity f is either superlinear or sublinear at infinity in u. With the help of the variational methods, we obtain the existence and multiplicity results in the working spaces.
基金This work was supported by the National Natural Science Foundation of China(Grant No.11771237).
文摘We study a functional modelling the progressive lens design,which is a combination of Willmore functional and total Gauss curvature.First,we prove the existence for the minimizers of this class of functionals among the class of revolution surfaces rotated by the curves y=f(x)about the x-axis.Then,choosing such a minimiser as background surfaces to approximate the functional by a quadratic functional,we prove the existence and uniqueness of the solution to the Euler-Lagrange equation for the quadratic functionals.Our results not only provide a strictly mathematical proof for numerical methods,but also give a more reasonable and more extensive choice for the background surfaces.