The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact ana...The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox H-function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions.展开更多
Let s and z be complex variables, Γ(s) be the Gamma function, and for any complex v be the generalized Pochhammer symbol. Wright Type Hypergeometric Function is defined (Virchenko et al. [1]), as: where which is a di...Let s and z be complex variables, Γ(s) be the Gamma function, and for any complex v be the generalized Pochhammer symbol. Wright Type Hypergeometric Function is defined (Virchenko et al. [1]), as: where which is a direct generalization of classical Gauss Hypergeometric Function 2F1(a,b;c;z). The principal aim of this paper is to study the various properties of this Wright type hypergeometric function 2R1(a,b;c;τ;z);which includes differentiation and integration, representation in terms of pFq and in terms of Mellin-Barnes type integral. Euler (Beta) transforms, Laplace transform, Mellin transform, Whittaker transform have also been obtained;along with its relationship with Fox H-function and Wright hypergeometric function.展开更多
In this paper, we presents some new exact solutions corresponding to three unsteady flow problems of a generalized Jeffrey fluid produced by a flat plate between two side walls perpendicular to the plate. The fraction...In this paper, we presents some new exact solutions corresponding to three unsteady flow problems of a generalized Jeffrey fluid produced by a flat plate between two side walls perpendicular to the plate. The fractional calculus approach is used in the governing equations. The exact solutions are established by means of the Fourier sine transform and N-transform. The series solutions of velocity field and associated shear stress in terms of Fox H-function, satisfying all imposed initial and boundary conditions, have been obtained. The similar solutions for ordinary Jeffrey fluid, performing the same motion, appear as limiting case of the solutions are also obtained. Also, the obtained results are analyzed graphically through various pertinent parameters.展开更多
Following the fractional cable equation established in the letter [B.I. Henry, T.A.M. Langlands, and S.L.Wearne, Phys. Rev. Lett. 100(2008) 128103], we present the time-space fractional cable equation which describes ...Following the fractional cable equation established in the letter [B.I. Henry, T.A.M. Langlands, and S.L.Wearne, Phys. Rev. Lett. 100(2008) 128103], we present the time-space fractional cable equation which describes the anomalous transport of electrodiffusion in nerve cells. The derivation is based on the generalized fractional Ohm's law;and the temporal memory effects and spatial-nonlocality are involved in the time-space fractional model. With the help of integral transform method we derive the analytical solutions expressed by the Green's function; the corresponding fractional moments are calculated; and their asymptotic behaviors are discussed. In addition, the explicit solutions of the considered model with two different external current injections are also presented.展开更多
The generalized fractional elastic models govern the stochastic motion of several many-body systems,e.g., polymers, membranes, and growing interfaces. This paper focuses on the exact formulations and their asymptotic ...The generalized fractional elastic models govern the stochastic motion of several many-body systems,e.g., polymers, membranes, and growing interfaces. This paper focuses on the exact formulations and their asymptotic behaviors of the average of the solutions of the generalized fractional elastic models. So we directly analyze the Cauchy problem of the averaged generalized elastic model involving time fractional derivative and the convolution integral of a radially symmetric friction kernel with space fractional Laplacian.展开更多
基金The project supported by the National Natural Science Foundation of China(10272067)the Doctoral Program Foundation of the Education Ministry of China(20030422046)+1 种基金the Natural Science Foundation of Shandong Province,China(Y2006A 14)the Research Foundation of Shandong University at Weihai.
文摘The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach is used in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox H-function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions.
文摘Let s and z be complex variables, Γ(s) be the Gamma function, and for any complex v be the generalized Pochhammer symbol. Wright Type Hypergeometric Function is defined (Virchenko et al. [1]), as: where which is a direct generalization of classical Gauss Hypergeometric Function 2F1(a,b;c;z). The principal aim of this paper is to study the various properties of this Wright type hypergeometric function 2R1(a,b;c;τ;z);which includes differentiation and integration, representation in terms of pFq and in terms of Mellin-Barnes type integral. Euler (Beta) transforms, Laplace transform, Mellin transform, Whittaker transform have also been obtained;along with its relationship with Fox H-function and Wright hypergeometric function.
文摘In this paper, we presents some new exact solutions corresponding to three unsteady flow problems of a generalized Jeffrey fluid produced by a flat plate between two side walls perpendicular to the plate. The fractional calculus approach is used in the governing equations. The exact solutions are established by means of the Fourier sine transform and N-transform. The series solutions of velocity field and associated shear stress in terms of Fox H-function, satisfying all imposed initial and boundary conditions, have been obtained. The similar solutions for ordinary Jeffrey fluid, performing the same motion, appear as limiting case of the solutions are also obtained. Also, the obtained results are analyzed graphically through various pertinent parameters.
基金Supported by the Program for New Century Excellent Talents in University under Grant No.NCET-09-0438the National Natural Science Foundation of China under Grant No.11271173+2 种基金the training Program of the Major Research Plan of the National Natural Science Foundation of China under Grant No.91120014the Starting Research Foundation from the Xi’an University of Technology under GrantNo.108-211206the Scientific Research Foundation of the Education Department of Shaanxi Province under Grant No.2013JK0581
文摘Following the fractional cable equation established in the letter [B.I. Henry, T.A.M. Langlands, and S.L.Wearne, Phys. Rev. Lett. 100(2008) 128103], we present the time-space fractional cable equation which describes the anomalous transport of electrodiffusion in nerve cells. The derivation is based on the generalized fractional Ohm's law;and the temporal memory effects and spatial-nonlocality are involved in the time-space fractional model. With the help of integral transform method we derive the analytical solutions expressed by the Green's function; the corresponding fractional moments are calculated; and their asymptotic behaviors are discussed. In addition, the explicit solutions of the considered model with two different external current injections are also presented.
基金Supported by the Program for New Century Excellent Talents in University under Grant No.NCET-09-0438the National Natural Science Foundation of China under Grant Nos.11271173 and 11101330+1 种基金the Starting Research Fund from the Xi’an University of Technology under Grant No.108-211206the Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant No.2013JK0581
文摘The generalized fractional elastic models govern the stochastic motion of several many-body systems,e.g., polymers, membranes, and growing interfaces. This paper focuses on the exact formulations and their asymptotic behaviors of the average of the solutions of the generalized fractional elastic models. So we directly analyze the Cauchy problem of the averaged generalized elastic model involving time fractional derivative and the convolution integral of a radially symmetric friction kernel with space fractional Laplacian.