Breeding of male-sterile lines has become the mainstream for the heterosis utilization in foxtail millet,but the genetic basis of most male-sterile lines used for the hybrid is still an area to be elucidated.In this s...Breeding of male-sterile lines has become the mainstream for the heterosis utilization in foxtail millet,but the genetic basis of most male-sterile lines used for the hybrid is still an area to be elucidated.In this study,a highly male-sterile line Gao146A was investigated.Genetic analysis indicated that the highly male-sterile phenotype was controlled by a single recessive gene a single recessive gene.Using F 2 population derived from cross Gao146A/K103,one gene controlling the highly male- sterility,tentatively named as ms1,which linked to SSR marker b234 with genetic distance of 16.7 cM,was mapped on the chromosome VI.These results not only laid the foundation for fine mapping of this highly male-sterile gene,but also helped to accelerate the improvement of highly male-sterile lines by using molecular marker assisted breeding method.展开更多
Arid and semi-arid regions of China account for more than half of the country. Because of drought resistance and high nutritive value, elite foxtail millet (Setaria Italica (L.) P. Beauv.) is one of the most important...Arid and semi-arid regions of China account for more than half of the country. Because of drought resistance and high nutritive value, elite foxtail millet (Setaria Italica (L.) P. Beauv.) is one of the most important cereal crops in China. Evaluation of germplasm and genetic diversity of foxtail millet is still in its infancy, but prolamin could play an important role as a protein marker. To investigate the genetic diversity and population structure of foxtail millet from different ecological zones of China, 90 accessions of foxtail millet were collected from three major ecological areas: North, Northwest, and Northeast China. The prolamin contents were examined by acid polyacrylamide gel electrophoresis (acid-PAGE). Five to twenty-two prolamin bands appeared in tested varieties, of which were polymorphic, so prolamin patterns of foxtail millet varieties can be used in variety identification and evaluation. Structure analysis identified six groups, which matches their pedigree information but not their geographic origins. This indicated a high degree (87.78%) of consistency with a phylogenetic classification based on SSR. The results showed prolamin banding patterns were an effective method for analyzing foxtail millet genetic variability.展开更多
Foxtail millet(Setaria italica(L.)P.Beauv)is a naturally stress tolerant crop.Compared to other gramineous crops,it has relatively stronger drought and lower nutrition stress tolerance traits.To date,the scope of ...Foxtail millet(Setaria italica(L.)P.Beauv)is a naturally stress tolerant crop.Compared to other gramineous crops,it has relatively stronger drought and lower nutrition stress tolerance traits.To date,the scope of functional genomics research in foxtail millet(S.italic L.)has been quite limited.NAC(NAM,ATAF1/2 and CUC2)-like transcription factors are known to be involved in various biological processes,including abiotic stress responses.In our previous foxtail millet(S.italic L.)RNA seq analysis,we found that the expression of a NAC-like transcription factor,SiNAC110,could be induced by drought stress;additionally,other references have reported that SiNAC110 expression could be induced by abiotic stress.So,we here selected SiNAC110 for further characterization and functional analysis.First,the predicted SiNAC110 protein encoded indicated SiNAC110 has a conserved NAM(no apical meristem)domain between the 11–139 amino acid positions.Phylogenetic analysis then indicated that SiNAC110 belongs to subfamily III of the NAC gene family.Subcellular localization analysis revealed that the SiNAC110-GFP fusion protein was localized to the nucleus in Arabidopsis protoplasts.Gene expression profiling analysis indicated that expression of SiNAC110 was induced by dehydration,high salinity and other abiotic stresses.Gene functional analysis using SiNAC110 overexpressed Arabidopsis plants indicated that,under drought and high salt stress conditions,the seed germination rate,root length,root surface area,fresh weight,and dry weight of the SiNAC110 overexpressed lines were significantly higher than the wild type(WT),suggesting that the SiNAC110 overexpressed lines had enhanced tolerance to drought and high salt stresses.However,overexpression of SiN AC110 did not affect the sensitivity of SiNAC110 overexpressed lines to abscisic acid(ABA)treatment.Expression analysis of genes involved in proline synthesis,Na+/K+transport,drought responses,and aqueous transport proteins were higher in the SiNAC110overexpressed lines than in the WT,whereas expression of ABA-dependent pathway genes did not change.These results indicated that overexpression of SiNAC110 conferred tolerance to drought and high salt stresses,likely through influencing the regulation of proline biosynthesis,ion homeostasis and osmotic balance.Therefore,SiNAC110 appears to function in the ABA-independent abiotic stress response pathway in plants.展开更多
Male sterility is a common biological phenomenon in plant kingdom and has been used to generate male-sterile lines, which are important genetic resources for commercial hybrid seed production. Although increasing numb...Male sterility is a common biological phenomenon in plant kingdom and has been used to generate male-sterile lines, which are important genetic resources for commercial hybrid seed production. Although increasing numbers of male-sterility genes have been identified in rice(Oryza sativa) and Arabidopsis(Arabidopsis thaliana), few male-sterility-related genes have been characterized in foxtail millet(Setaria italica). In this study, we isolated a male-sterile ethyl methanesulfonate-generated mutant in foxtail millet, no pollen 1(sinp1), which displayed abnormal Ubisch bodies, defective pollen exine and complete male sterility. Using bulk segregation analysis, we cloned SiNP1 and confirmed its function with CRISPR/Cas9 genome editing. SiNP1 encoded a putative glucose-methanol-choline oxidoreductase.Subcellular localization showed that the SiNP1 protein was preferentially localized to the endoplasmic reticulum and was predominantly expressed in panicle. Transcriptome analysis revealed that many genes were differentially expressed in the sinp1 mutant, some of which encoded proteins putatively involved in carbohydrate metabolism, fatty acid biosynthesis, and lipid transport and metabolism, which were closely associated with pollen wall development. Metabolome analysis revealed the disturbance of flavonoids metabolism and fatty acid biosynthesis in the mutant. In conclusion, identification of SiNP1 provides a candidate male-sterility gene for heterosis utilization in foxtail millet and gives further insight into the mechanism of pollen reproduction in plants.展开更多
Retrotransposons account for a large proportion of the genome and genomic variation, and play key roles in creating novel genes and diversifying the genome in many eukaryotic species. Although retrotransposons are abu...Retrotransposons account for a large proportion of the genome and genomic variation, and play key roles in creating novel genes and diversifying the genome in many eukaryotic species. Although retrotransposons are abundant in plants, their roles had been underestimated because of a lack of research. Here, we characterized a gibberellin Acid (GA)-insensitive dwarf mutant, 84133, in foxtail millet. Map-based cloning revealed a 5.5-kb Copia-like retrotransposon insertion in DWARF1 (D1), which encodes a DELLA protein. Transcriptional analysis showed that the Copia retrotransposon mediated the transcriptional reprogramming of D1 leading to a novel N-terminal-deleted truncated DELLA transcript that was putatively driven by Copia's LTR, namely D1-TT, and another chimeric transcript. The presence of D1-TT was confirmed by protein immunodetection analysis. Furthermore, D1-TT protein was resistant to GA3 treatment compared with the intact DELLA protein due to its inability to interact with the GA receptor, SiGID1. Overexpression of D1-TT in foxtail millet resulted in dwarf plants, confirming that it determines the dwarfism of 84133. Thus, our study documents a rare instance of long terminal repeat (LTR) retrotransposon-mediated transcriptional reprograming in the plant kingdom. These results shed light on the function of LTR retrotransposons in generating new gene functions and genetic diversity.展开更多
We investigated genetic variation of a rice HEADING DATE 1(HD1) homolog in foxtail millet.First, we searched for a rice HD1 homolog in a foxtail millet genome sequence and designed primers to amplify the entire coding...We investigated genetic variation of a rice HEADING DATE 1(HD1) homolog in foxtail millet.First, we searched for a rice HD1 homolog in a foxtail millet genome sequence and designed primers to amplify the entire coding sequence of the gene. We compared full HD1 gene sequences of 11 accessions(including Yugu 1, a Chinese cultivar used for genome sequencing) from various regions in Europe and Asia, found a nucleotide substitution at a putative splice site of intron 1, and designated the accessions with the nucleotide substitution as carrying a splicing variant. We verified by RT-PCR that this single nucleotide substitution causes aberrant splicing of intron 1. We investigated the geographical distribution of the splicing variant in 480 accessions of foxtail millet from various regions of Europe and Asia and part of Africa by d CAPS and found that the splicing variant is broadly distributed in Europe and Asia. Differences of heading times between accessions with wild type allele of the HD1 gene and those with the splicing variant allele were unclear. We also investigated variation in 13 accessions of ssp. viridis, the wild ancestor, and the results suggested that the wild type is predominant in the wild ancestor.展开更多
Compact calli derived from immature spikelet of a foxtail millet variety—Jigu 11cann’t be directly used for protoplast isolation because of its firm physical structure,and must beloosened with subculturing in M<s...Compact calli derived from immature spikelet of a foxtail millet variety—Jigu 11cann’t be directly used for protoplast isolation because of its firm physical structure,and must beloosened with subculturing in M<sub>1</sub>,M<sub>2</sub> and M<sub>3</sub> media successively and altering these media compo-sitions.The loosened calli can be selected from the regulation and used for protoplast isolationsuccessfully.Rate of protoplast division in KM<sub>8</sub>P medium was 12.3—33.5%.Calli derivedthrough protoplast division are loose and cann’t be used directly for plan regeneration because ofits soft physical structure.When they were subcultured in N<sub>6</sub>—1,N<sub>6</sub>—2,N<sub>6</sub>—3 and N<sub>6</sub>—4 media,in which the media compositions were changed,the compact calli were obtained and 129 plantletswere regenerated from them.101 plants,which grew to maturity after transplanting the plantletsinto field,exhibited sterility in some degree.Most of the subsequent lines derived from the regen-erated plants were sterile and only two lines could get normal reproduction.展开更多
Boron(B) is an essential micronutrient for vascular plant growth. Both B deficiency and toxicity can impair tissue development in diverse plant species, but little is known about the effect of B on reproductive panicl...Boron(B) is an essential micronutrient for vascular plant growth. Both B deficiency and toxicity can impair tissue development in diverse plant species, but little is known about the effect of B on reproductive panicle development and grain yield. In this study, a mutant of Setaria italica exhibiting necrotic panicle apices was identified and designated as sibor1. Sequencing revealed a candidate gene, Si BOR1, with a G-to-A alteration at the seventh exon. Knockout transgenic lines generated by clustered regularly interspaced short palindromic repeats and their associated protein-9 also had necrotic panicles, verifying the function of Si BOR1. Si BOR1 encoded a membrane-localized B efflux transporter, co-orthologous to the rice BOR1 protein. Si BOR1 was dominantly expressed in panicles and displayed a distinct expression pattern from those of its orthologs in other species. The induced mutation in Si BOR1 caused a reduction in the B content of panicle primary branches, and B deficiency-associated phenotypes such as thicker cell walls and higher cell porosity compared with Yugu 1. Transcriptome analysis indicated that differentially expressed genes involved in cell wall biogenesis, jasmonic acid synthesis, and programmed cell death response pathways were enriched in sibor1. q PCR analysis identified several key genes, including phenylalanine ammonia-lyase(Si PAL) and jasmonate-ZIM-domain(Si JAZ) genes, responsive to B-deficient conditions. These results indicate that Si BOR1 helps to regulate panicle primary branch development to maintain grain yield in S. italica. Our findings shed light on molecular mechanisms underlying the relationship between B transport and plant development in S. italica.展开更多
A new millet (Setaria italica Beauv) variety, super early-mature millet No.1, was bred by means of gene bank breedingmethod of target characters. This variety has the following outstanding characters. (1) Super early-...A new millet (Setaria italica Beauv) variety, super early-mature millet No.1, was bred by means of gene bank breedingmethod of target characters. This variety has the following outstanding characters. (1) Super early-mature. This varietyonly needs 1550C effective accumulated temperature and can normally maturate in the Bashang Region in Hebei Provinceof Chi na, which can break through the limit zone of millet cultivation and move the cultivation zone northward greatly. (2)Multi-spikes, in addition to the effect tilling at the top, the nodes in the low-middle part also can produce spikes. (3) Sweetstem have high sugar content. The contents of whole-sugar, soluable sugar and deoxidized sugar are 74.8, 200.5, 237.2%higher than the regular varieties respectively. (4) High gross protein content. The content of gross protein is higher thanthe regular varieties by 3.9-30.4%. (5)Changeable grain color. The grain color of super early-mature millet No.1 is red inShijiazhuang, but yellow in the Bashang region. In addition, this variety is characterized by good quality, high yield, andgood synthetic traits展开更多
基金supported by the Postdoctoral Management Committee,China(92948)the Natural Science Foundation of Shanxi Province,China(2012011032-1)the Chinese Agricultural Research System(CARS-07)
文摘Breeding of male-sterile lines has become the mainstream for the heterosis utilization in foxtail millet,but the genetic basis of most male-sterile lines used for the hybrid is still an area to be elucidated.In this study,a highly male-sterile line Gao146A was investigated.Genetic analysis indicated that the highly male-sterile phenotype was controlled by a single recessive gene a single recessive gene.Using F 2 population derived from cross Gao146A/K103,one gene controlling the highly male- sterility,tentatively named as ms1,which linked to SSR marker b234 with genetic distance of 16.7 cM,was mapped on the chromosome VI.These results not only laid the foundation for fine mapping of this highly male-sterile gene,but also helped to accelerate the improvement of highly male-sterile lines by using molecular marker assisted breeding method.
文摘Arid and semi-arid regions of China account for more than half of the country. Because of drought resistance and high nutritive value, elite foxtail millet (Setaria Italica (L.) P. Beauv.) is one of the most important cereal crops in China. Evaluation of germplasm and genetic diversity of foxtail millet is still in its infancy, but prolamin could play an important role as a protein marker. To investigate the genetic diversity and population structure of foxtail millet from different ecological zones of China, 90 accessions of foxtail millet were collected from three major ecological areas: North, Northwest, and Northeast China. The prolamin contents were examined by acid polyacrylamide gel electrophoresis (acid-PAGE). Five to twenty-two prolamin bands appeared in tested varieties, of which were polymorphic, so prolamin patterns of foxtail millet varieties can be used in variety identification and evaluation. Structure analysis identified six groups, which matches their pedigree information but not their geographic origins. This indicated a high degree (87.78%) of consistency with a phylogenetic classification based on SSR. The results showed prolamin banding patterns were an effective method for analyzing foxtail millet genetic variability.
基金funded by the National Key Project for Research on Transgenic Biology, China (2016ZX08002-002)the Innovation Project of Chinese Academy of Agricultural Sciences
文摘Foxtail millet(Setaria italica(L.)P.Beauv)is a naturally stress tolerant crop.Compared to other gramineous crops,it has relatively stronger drought and lower nutrition stress tolerance traits.To date,the scope of functional genomics research in foxtail millet(S.italic L.)has been quite limited.NAC(NAM,ATAF1/2 and CUC2)-like transcription factors are known to be involved in various biological processes,including abiotic stress responses.In our previous foxtail millet(S.italic L.)RNA seq analysis,we found that the expression of a NAC-like transcription factor,SiNAC110,could be induced by drought stress;additionally,other references have reported that SiNAC110 expression could be induced by abiotic stress.So,we here selected SiNAC110 for further characterization and functional analysis.First,the predicted SiNAC110 protein encoded indicated SiNAC110 has a conserved NAM(no apical meristem)domain between the 11–139 amino acid positions.Phylogenetic analysis then indicated that SiNAC110 belongs to subfamily III of the NAC gene family.Subcellular localization analysis revealed that the SiNAC110-GFP fusion protein was localized to the nucleus in Arabidopsis protoplasts.Gene expression profiling analysis indicated that expression of SiNAC110 was induced by dehydration,high salinity and other abiotic stresses.Gene functional analysis using SiNAC110 overexpressed Arabidopsis plants indicated that,under drought and high salt stress conditions,the seed germination rate,root length,root surface area,fresh weight,and dry weight of the SiNAC110 overexpressed lines were significantly higher than the wild type(WT),suggesting that the SiNAC110 overexpressed lines had enhanced tolerance to drought and high salt stresses.However,overexpression of SiN AC110 did not affect the sensitivity of SiNAC110 overexpressed lines to abscisic acid(ABA)treatment.Expression analysis of genes involved in proline synthesis,Na+/K+transport,drought responses,and aqueous transport proteins were higher in the SiNAC110overexpressed lines than in the WT,whereas expression of ABA-dependent pathway genes did not change.These results indicated that overexpression of SiNAC110 conferred tolerance to drought and high salt stresses,likely through influencing the regulation of proline biosynthesis,ion homeostasis and osmotic balance.Therefore,SiNAC110 appears to function in the ABA-independent abiotic stress response pathway in plants.
基金supported by the National Natural Science Foundation of China(31771807)the China Agriculture Research System(CARS06-13.5-A04)+1 种基金the National Key Research and Development Program of China(2018YFD1000700 and 2018YFD1000701)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences。
文摘Male sterility is a common biological phenomenon in plant kingdom and has been used to generate male-sterile lines, which are important genetic resources for commercial hybrid seed production. Although increasing numbers of male-sterility genes have been identified in rice(Oryza sativa) and Arabidopsis(Arabidopsis thaliana), few male-sterility-related genes have been characterized in foxtail millet(Setaria italica). In this study, we isolated a male-sterile ethyl methanesulfonate-generated mutant in foxtail millet, no pollen 1(sinp1), which displayed abnormal Ubisch bodies, defective pollen exine and complete male sterility. Using bulk segregation analysis, we cloned SiNP1 and confirmed its function with CRISPR/Cas9 genome editing. SiNP1 encoded a putative glucose-methanol-choline oxidoreductase.Subcellular localization showed that the SiNP1 protein was preferentially localized to the endoplasmic reticulum and was predominantly expressed in panicle. Transcriptome analysis revealed that many genes were differentially expressed in the sinp1 mutant, some of which encoded proteins putatively involved in carbohydrate metabolism, fatty acid biosynthesis, and lipid transport and metabolism, which were closely associated with pollen wall development. Metabolome analysis revealed the disturbance of flavonoids metabolism and fatty acid biosynthesis in the mutant. In conclusion, identification of SiNP1 provides a candidate male-sterility gene for heterosis utilization in foxtail millet and gives further insight into the mechanism of pollen reproduction in plants.
基金supported by the National Natural Science Foundation of China (31871634, 31500985)
文摘Retrotransposons account for a large proportion of the genome and genomic variation, and play key roles in creating novel genes and diversifying the genome in many eukaryotic species. Although retrotransposons are abundant in plants, their roles had been underestimated because of a lack of research. Here, we characterized a gibberellin Acid (GA)-insensitive dwarf mutant, 84133, in foxtail millet. Map-based cloning revealed a 5.5-kb Copia-like retrotransposon insertion in DWARF1 (D1), which encodes a DELLA protein. Transcriptional analysis showed that the Copia retrotransposon mediated the transcriptional reprogramming of D1 leading to a novel N-terminal-deleted truncated DELLA transcript that was putatively driven by Copia's LTR, namely D1-TT, and another chimeric transcript. The presence of D1-TT was confirmed by protein immunodetection analysis. Furthermore, D1-TT protein was resistant to GA3 treatment compared with the intact DELLA protein due to its inability to interact with the GA receptor, SiGID1. Overexpression of D1-TT in foxtail millet resulted in dwarf plants, confirming that it determines the dwarfism of 84133. Thus, our study documents a rare instance of long terminal repeat (LTR) retrotransposon-mediated transcriptional reprograming in the plant kingdom. These results shed light on the function of LTR retrotransposons in generating new gene functions and genetic diversity.
基金supported by the NIAS Genebank Project,NIAS,Japan
文摘We investigated genetic variation of a rice HEADING DATE 1(HD1) homolog in foxtail millet.First, we searched for a rice HD1 homolog in a foxtail millet genome sequence and designed primers to amplify the entire coding sequence of the gene. We compared full HD1 gene sequences of 11 accessions(including Yugu 1, a Chinese cultivar used for genome sequencing) from various regions in Europe and Asia, found a nucleotide substitution at a putative splice site of intron 1, and designated the accessions with the nucleotide substitution as carrying a splicing variant. We verified by RT-PCR that this single nucleotide substitution causes aberrant splicing of intron 1. We investigated the geographical distribution of the splicing variant in 480 accessions of foxtail millet from various regions of Europe and Asia and part of Africa by d CAPS and found that the splicing variant is broadly distributed in Europe and Asia. Differences of heading times between accessions with wild type allele of the HD1 gene and those with the splicing variant allele were unclear. We also investigated variation in 13 accessions of ssp. viridis, the wild ancestor, and the results suggested that the wild type is predominant in the wild ancestor.
文摘Compact calli derived from immature spikelet of a foxtail millet variety—Jigu 11cann’t be directly used for protoplast isolation because of its firm physical structure,and must beloosened with subculturing in M<sub>1</sub>,M<sub>2</sub> and M<sub>3</sub> media successively and altering these media compo-sitions.The loosened calli can be selected from the regulation and used for protoplast isolationsuccessfully.Rate of protoplast division in KM<sub>8</sub>P medium was 12.3—33.5%.Calli derivedthrough protoplast division are loose and cann’t be used directly for plan regeneration because ofits soft physical structure.When they were subcultured in N<sub>6</sub>—1,N<sub>6</sub>—2,N<sub>6</sub>—3 and N<sub>6</sub>—4 media,in which the media compositions were changed,the compact calli were obtained and 129 plantletswere regenerated from them.101 plants,which grew to maturity after transplanting the plantletsinto field,exhibited sterility in some degree.Most of the subsequent lines derived from the regen-erated plants were sterile and only two lines could get normal reproduction.
基金supported by the National Key Research and Development Program of China(2019YFD1000700 and 2019YFD1000704)the National Natural Science Foundation of China(31871692)+1 种基金the China Agricultural Research System(CARS06-13.5-A04)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences。
文摘Boron(B) is an essential micronutrient for vascular plant growth. Both B deficiency and toxicity can impair tissue development in diverse plant species, but little is known about the effect of B on reproductive panicle development and grain yield. In this study, a mutant of Setaria italica exhibiting necrotic panicle apices was identified and designated as sibor1. Sequencing revealed a candidate gene, Si BOR1, with a G-to-A alteration at the seventh exon. Knockout transgenic lines generated by clustered regularly interspaced short palindromic repeats and their associated protein-9 also had necrotic panicles, verifying the function of Si BOR1. Si BOR1 encoded a membrane-localized B efflux transporter, co-orthologous to the rice BOR1 protein. Si BOR1 was dominantly expressed in panicles and displayed a distinct expression pattern from those of its orthologs in other species. The induced mutation in Si BOR1 caused a reduction in the B content of panicle primary branches, and B deficiency-associated phenotypes such as thicker cell walls and higher cell porosity compared with Yugu 1. Transcriptome analysis indicated that differentially expressed genes involved in cell wall biogenesis, jasmonic acid synthesis, and programmed cell death response pathways were enriched in sibor1. q PCR analysis identified several key genes, including phenylalanine ammonia-lyase(Si PAL) and jasmonate-ZIM-domain(Si JAZ) genes, responsive to B-deficient conditions. These results indicate that Si BOR1 helps to regulate panicle primary branch development to maintain grain yield in S. italica. Our findings shed light on molecular mechanisms underlying the relationship between B transport and plant development in S. italica.
基金This work was supported by the National 863 Program of China(2001AA241251).
文摘A new millet (Setaria italica Beauv) variety, super early-mature millet No.1, was bred by means of gene bank breedingmethod of target characters. This variety has the following outstanding characters. (1) Super early-mature. This varietyonly needs 1550C effective accumulated temperature and can normally maturate in the Bashang Region in Hebei Provinceof Chi na, which can break through the limit zone of millet cultivation and move the cultivation zone northward greatly. (2)Multi-spikes, in addition to the effect tilling at the top, the nodes in the low-middle part also can produce spikes. (3) Sweetstem have high sugar content. The contents of whole-sugar, soluable sugar and deoxidized sugar are 74.8, 200.5, 237.2%higher than the regular varieties respectively. (4) High gross protein content. The content of gross protein is higher thanthe regular varieties by 3.9-30.4%. (5)Changeable grain color. The grain color of super early-mature millet No.1 is red inShijiazhuang, but yellow in the Bashang region. In addition, this variety is characterized by good quality, high yield, andgood synthetic traits