The fracture toughness, the driving force and the fracture energy for an infinite plate with a fractal crack are investigated in the fractal space in this work. The perimeter-area relation is adopted to derive the tra...The fracture toughness, the driving force and the fracture energy for an infinite plate with a fractal crack are investigated in the fractal space in this work. The perimeter-area relation is adopted to derive the transforma-tion rule between damage variables in the fractal space and Euclidean space. A plasticity yield criterion is introduced and a damage variable tensor is decomposed into tensile and compressive components to describe the distinct behaviors in tension and compression. A plastic damage constitutive model for concrete in the Euclidean space is developed and generalized to fractal case according to the transformation rule of damage variables. Numerical calculations of the present model with and without fractal are conducted and compared with experimental data to verify the efficiency of this model and show the necessity of considering the fractal effect in the constitutive model of concrete. The structural response and mesh sensitivity of a notched unre-inforced concrete beam under 3-point bending test are theoretical studied and show good agreement with the experimental data.展开更多
The time-delayed fractal Van der Pol–Helmholtz–Duffing(VPHD)oscillator is the subject of this paper,which explores its mechanisms and highlights its stability analysis.While time-delayed technologies are currently g...The time-delayed fractal Van der Pol–Helmholtz–Duffing(VPHD)oscillator is the subject of this paper,which explores its mechanisms and highlights its stability analysis.While time-delayed technologies are currently garnering significant attention,the focus of this research remains crucially relevant.A non-perturbative approach is employed to refine and set the stage for the system under scrutiny.The innovative methodologies introduced yield an equivalent linear differential equation,mirroring the inherent nonlinearities of the system.Notably,the incorporation of quadratic nonlinearity into the frequency formula represents a cutting-edge advancement.The analytical solution's validity is corroborated using a numerical approach.Stability conditions are ascertained through the residual Galerkin method.Intriguingly,it is observed that the delay parameter,in the context of the fractal system,reverses its stabilizing influence,impacting both the amplitude of delayed velocity and the position.The analytical solution's precision is underscored by its close alignment with numerical results.Furthermore,the study reveals that fractal characteristics emulate damping behaviors.Given its applicability across diverse nonlinear dynamical systems,this non-perturbative approach emerges as a promising avenue for future research.展开更多
In this paper we Ointroduce linear-spaces consisting of continuous functions whose graphs are the attactars of a special class of iterated function systems. We show that such spaces are finite dimensional and give the...In this paper we Ointroduce linear-spaces consisting of continuous functions whose graphs are the attactars of a special class of iterated function systems. We show that such spaces are finite dimensional and give the bases of these spaces in an implicit way. Given such a space, we discuss how to obtain a set of knots for whah the Lagrange interpolation problem by the space is uniquely solvable.展开更多
The fractal dimensions in different topological spaces of polyferric chloride-humic acid (PFC-HA) flocs, formed in flocculating different kinds of humic acids (HA) water at different initial pH (9.0, 7.0, 5.0) a...The fractal dimensions in different topological spaces of polyferric chloride-humic acid (PFC-HA) flocs, formed in flocculating different kinds of humic acids (HA) water at different initial pH (9.0, 7.0, 5.0) and PFC dosages, were calculated by effective densitymaximum diameter, image analysis, and N2 absorption-desorption methods, respectively. The mass fractal dimensions (De) of PFC-HA floes were calculated by bi-logarithm relation of effective density with maximum diameter and Logan empirical equation. The Df value was more than 2.0 at initial pH of 7,0, which was 11% and 13% higher than those at pH 9.0 and 5.0, respecively, indicating the most compact flocs formed in flocculated HA water at initial pH of 7.0. The image analysis for those flocs indicates that after flocculating the HA water at initial pH greater than 7.0 with PFC flocculant, the fractal dimensions of D2 (logA vs. logdL) and D3 (logVsphere vs. logdL) of PFC-HA floes decreased with the increase of PFC dosages, and PFC-HA floes showed a gradually looser structure. At the optimum dosage of PFC, the D2 (logA vs. logdL) values of the flocs show 14%-43% difference with their corresponding Dr, and they even had different tendency with the change of initial pH values. However, the D2 values of the floes formed at three different initial pH in HA solution had a same tendency with the corresponding Df. Based on fractal Frenkel-Halsey-HiU (FHH) adsorption and desorption equations, the pore surface fractal dimensions (Ds) for dried powders of PFC-HA flocs formed in HA water with initial pH 9.0 and 7.0 were all close to 2.9421, and the Ds values of flocs formed at initial pH 5.0 were less than 2.3746. It indicated that the pore surface fractal dimensions of PFC-HA floes dried powder mainly show the irregularity from the mesopore-size distribution and marcopore-size distribution.展开更多
This paper establishes the phase space in the light of spacial series data , discusses the fractal structure of geological data in terms of correlated functions and studies the chaos of these data . In addition , it i...This paper establishes the phase space in the light of spacial series data , discusses the fractal structure of geological data in terms of correlated functions and studies the chaos of these data . In addition , it introduces the R/S analysis for time series analysis into spacial series to calculate the structural fractal dimensions of ranges and standard deviation for spacial series data -and to establish the fractal dimension matrix and the procedures in plotting the fractal dimension anomaly diagram with vector distances of fractal dimension . At last , it has examples of its application .展开更多
Based on Witten’s T-duality and mirror symmetry we show, following earlier work, the fundamental complimentarity of the Casimir energy and dark energy. Such a conclusion opens new vistas in cold fusion technology in ...Based on Witten’s T-duality and mirror symmetry we show, following earlier work, the fundamental complimentarity of the Casimir energy and dark energy. Such a conclusion opens new vistas in cold fusion technology in the wider sense of the word which we tackle via fractal nano technologies leading to some design proposals for a nano Casimir-dark energy reactor.展开更多
An instructive analogy between the deformation of a pinched elastic cylindrical shell and the anti-gravity behind accelerated cosmic expansion is established. Subsequently the entire model is interpreted in terms of a...An instructive analogy between the deformation of a pinched elastic cylindrical shell and the anti-gravity behind accelerated cosmic expansion is established. Subsequently the entire model is interpreted in terms of a hyperbolic fractal Rindler space-time leading to the same robust results regarding real energy and dark energy being 4.5% and 95.5% respectively in full agreement with all recent cosmological measurements.展开更多
Modern advances in pure mathematics and particularly in transfinite set theory have introduced into the fundamentals of theoretical physics many novel concepts and devices such as fractal quasi manifolds with non-inte...Modern advances in pure mathematics and particularly in transfinite set theory have introduced into the fundamentals of theoretical physics many novel concepts and devices such as fractal quasi manifolds with non-integer (Hausdorff) dimension for its geometry as well as infinite dimensional wild topology and non classical fuzzy logic. In the present work transfinite fractal sets and fuzzy logic are combined to enable the introduction of a new theory termed fractal logic to the foundation of high energy particle physics. This leads naturally to a new look at quantum gravity. In particular we will show that to understand and develop quantum gravity we have to bring various fields together, particularly fractals and nonlinear dynamics as well as sphere packing, fuzzy set theory, number theory and quantum entanglement and irrationally q-deformed algebra.展开更多
At its most basic level physics starts with space-time topology and geometry. On the other hand topology’s and geometry’s simplest and most basic elements are random Cantor sets. It follows then that nonlinear dynam...At its most basic level physics starts with space-time topology and geometry. On the other hand topology’s and geometry’s simplest and most basic elements are random Cantor sets. It follows then that nonlinear dynamics i.e. deterministic chaos and fractal geometry is the best mathematical theory to apply to the problems of high energy particle physics and cosmology. In the present work we give a short survey of some recent achievements of applying nonlinear dynamics to notoriously difficult subjects such as quantum entanglement as well as the origin and true nature of dark energy, negative absolute temperature and the fractal meaning of the constancy of the speed of light.展开更多
In this paper, three types of modeling of diffusion equations for price changing of commodity are studied. In which, the partial derivatives of price of commodity respected to time on the left hand side are integer-de...In this paper, three types of modeling of diffusion equations for price changing of commodity are studied. In which, the partial derivatives of price of commodity respected to time on the left hand side are integer-derivative, fractal derivative, and fractional derivative respectively;while just a second order derivative respected to space is considered on the right hand side. The solutions of these diffusion equations are obtained by method of departing variables and initial boundary conditions, by translation of variables, and by translation of operators. The definitions of order of commodity x and the distance between commodity?xi and xj are defined as [1]. Examples of calculation of price of pork, beef and mutton mainly due to price raising of pork in 2007-07 to 2008-02 inChina are given with same market data as [1]. Conclusion is made.展开更多
文摘The fracture toughness, the driving force and the fracture energy for an infinite plate with a fractal crack are investigated in the fractal space in this work. The perimeter-area relation is adopted to derive the transforma-tion rule between damage variables in the fractal space and Euclidean space. A plasticity yield criterion is introduced and a damage variable tensor is decomposed into tensile and compressive components to describe the distinct behaviors in tension and compression. A plastic damage constitutive model for concrete in the Euclidean space is developed and generalized to fractal case according to the transformation rule of damage variables. Numerical calculations of the present model with and without fractal are conducted and compared with experimental data to verify the efficiency of this model and show the necessity of considering the fractal effect in the constitutive model of concrete. The structural response and mesh sensitivity of a notched unre-inforced concrete beam under 3-point bending test are theoretical studied and show good agreement with the experimental data.
文摘The time-delayed fractal Van der Pol–Helmholtz–Duffing(VPHD)oscillator is the subject of this paper,which explores its mechanisms and highlights its stability analysis.While time-delayed technologies are currently garnering significant attention,the focus of this research remains crucially relevant.A non-perturbative approach is employed to refine and set the stage for the system under scrutiny.The innovative methodologies introduced yield an equivalent linear differential equation,mirroring the inherent nonlinearities of the system.Notably,the incorporation of quadratic nonlinearity into the frequency formula represents a cutting-edge advancement.The analytical solution's validity is corroborated using a numerical approach.Stability conditions are ascertained through the residual Galerkin method.Intriguingly,it is observed that the delay parameter,in the context of the fractal system,reverses its stabilizing influence,impacting both the amplitude of delayed velocity and the position.The analytical solution's precision is underscored by its close alignment with numerical results.Furthermore,the study reveals that fractal characteristics emulate damping behaviors.Given its applicability across diverse nonlinear dynamical systems,this non-perturbative approach emerges as a promising avenue for future research.
文摘In this paper we Ointroduce linear-spaces consisting of continuous functions whose graphs are the attactars of a special class of iterated function systems. We show that such spaces are finite dimensional and give the bases of these spaces in an implicit way. Given such a space, we discuss how to obtain a set of knots for whah the Lagrange interpolation problem by the space is uniquely solvable.
基金supported by the National Natural Science Foundation of China (No. 20407004, 50578012, 50178009)the High-Tech Research and Development Program (863) of China (No. 2007AA06Z301)+2 种基金the Fok Ying Tung Education Foundation of National Education Ministry of China (No. 91078)the Beijing Municipal Commission of Education Project, Program for New Cen- tury Excellent Talents in University (No. NCET-06-0120)the Beijing Nova of Science and Technology, Beijing Key Subject (No. XK100220555).
文摘The fractal dimensions in different topological spaces of polyferric chloride-humic acid (PFC-HA) flocs, formed in flocculating different kinds of humic acids (HA) water at different initial pH (9.0, 7.0, 5.0) and PFC dosages, were calculated by effective densitymaximum diameter, image analysis, and N2 absorption-desorption methods, respectively. The mass fractal dimensions (De) of PFC-HA floes were calculated by bi-logarithm relation of effective density with maximum diameter and Logan empirical equation. The Df value was more than 2.0 at initial pH of 7,0, which was 11% and 13% higher than those at pH 9.0 and 5.0, respecively, indicating the most compact flocs formed in flocculated HA water at initial pH of 7.0. The image analysis for those flocs indicates that after flocculating the HA water at initial pH greater than 7.0 with PFC flocculant, the fractal dimensions of D2 (logA vs. logdL) and D3 (logVsphere vs. logdL) of PFC-HA floes decreased with the increase of PFC dosages, and PFC-HA floes showed a gradually looser structure. At the optimum dosage of PFC, the D2 (logA vs. logdL) values of the flocs show 14%-43% difference with their corresponding Dr, and they even had different tendency with the change of initial pH values. However, the D2 values of the floes formed at three different initial pH in HA solution had a same tendency with the corresponding Df. Based on fractal Frenkel-Halsey-HiU (FHH) adsorption and desorption equations, the pore surface fractal dimensions (Ds) for dried powders of PFC-HA flocs formed in HA water with initial pH 9.0 and 7.0 were all close to 2.9421, and the Ds values of flocs formed at initial pH 5.0 were less than 2.3746. It indicated that the pore surface fractal dimensions of PFC-HA floes dried powder mainly show the irregularity from the mesopore-size distribution and marcopore-size distribution.
文摘This paper establishes the phase space in the light of spacial series data , discusses the fractal structure of geological data in terms of correlated functions and studies the chaos of these data . In addition , it introduces the R/S analysis for time series analysis into spacial series to calculate the structural fractal dimensions of ranges and standard deviation for spacial series data -and to establish the fractal dimension matrix and the procedures in plotting the fractal dimension anomaly diagram with vector distances of fractal dimension . At last , it has examples of its application .
文摘Based on Witten’s T-duality and mirror symmetry we show, following earlier work, the fundamental complimentarity of the Casimir energy and dark energy. Such a conclusion opens new vistas in cold fusion technology in the wider sense of the word which we tackle via fractal nano technologies leading to some design proposals for a nano Casimir-dark energy reactor.
文摘An instructive analogy between the deformation of a pinched elastic cylindrical shell and the anti-gravity behind accelerated cosmic expansion is established. Subsequently the entire model is interpreted in terms of a hyperbolic fractal Rindler space-time leading to the same robust results regarding real energy and dark energy being 4.5% and 95.5% respectively in full agreement with all recent cosmological measurements.
文摘Modern advances in pure mathematics and particularly in transfinite set theory have introduced into the fundamentals of theoretical physics many novel concepts and devices such as fractal quasi manifolds with non-integer (Hausdorff) dimension for its geometry as well as infinite dimensional wild topology and non classical fuzzy logic. In the present work transfinite fractal sets and fuzzy logic are combined to enable the introduction of a new theory termed fractal logic to the foundation of high energy particle physics. This leads naturally to a new look at quantum gravity. In particular we will show that to understand and develop quantum gravity we have to bring various fields together, particularly fractals and nonlinear dynamics as well as sphere packing, fuzzy set theory, number theory and quantum entanglement and irrationally q-deformed algebra.
文摘At its most basic level physics starts with space-time topology and geometry. On the other hand topology’s and geometry’s simplest and most basic elements are random Cantor sets. It follows then that nonlinear dynamics i.e. deterministic chaos and fractal geometry is the best mathematical theory to apply to the problems of high energy particle physics and cosmology. In the present work we give a short survey of some recent achievements of applying nonlinear dynamics to notoriously difficult subjects such as quantum entanglement as well as the origin and true nature of dark energy, negative absolute temperature and the fractal meaning of the constancy of the speed of light.
文摘In this paper, three types of modeling of diffusion equations for price changing of commodity are studied. In which, the partial derivatives of price of commodity respected to time on the left hand side are integer-derivative, fractal derivative, and fractional derivative respectively;while just a second order derivative respected to space is considered on the right hand side. The solutions of these diffusion equations are obtained by method of departing variables and initial boundary conditions, by translation of variables, and by translation of operators. The definitions of order of commodity x and the distance between commodity?xi and xj are defined as [1]. Examples of calculation of price of pork, beef and mutton mainly due to price raising of pork in 2007-07 to 2008-02 inChina are given with same market data as [1]. Conclusion is made.