期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
On a Quantum Gravity Fractal Spacetime Equation: QRG ≃HD + FG and Its Application to Dark Energy—Accelerated Cosmic Expansion 被引量:1
1
作者 Mohamed S. El Naschie 《Journal of Modern Physics》 2016年第8期729-736,共8页
The paper suggests that quantum relativistic gravity (QRG) is basically a higher dimensionality (HD) simulating relativity and non-classical effects plus a fractal Cantorian spacetime geometry (FG) simulating quantum ... The paper suggests that quantum relativistic gravity (QRG) is basically a higher dimensionality (HD) simulating relativity and non-classical effects plus a fractal Cantorian spacetime geometry (FG) simulating quantum mechanics. This more than just a conceptual equation is illustrated by integer approximation and an exact solution of the dark energy density behind cosmic expansion. 展开更多
关键词 fractal Cantorian spacetime Quantum Relativity Superstrings Transfinite Set Theory Extra spacetime Dimensions Quantum Physics Dark Energy Accelerated Cosmic Expansion Cosmic Topology Hyperbolic Geometry E-Infinity Theory Post Modernistic Physics
下载PDF
Einstein-Rosen Bridge (ER), Einstein-Podolsky-Rosen Experiment (EPR) and Zero Measure Rindler-KAM Cantorian Spacetime Geometry (ZMG) Are Conceptually Equivalent 被引量:1
2
作者 Mohamed S. El Naschie 《Journal of Quantum Information Science》 2016年第1期1-9,共9页
By viewing spacetime as a transfinite Turing computer, the present work is aimed at a generalization and geometrical-topological reinterpretation of a relatively old conjecture that the wormholes of general relativity... By viewing spacetime as a transfinite Turing computer, the present work is aimed at a generalization and geometrical-topological reinterpretation of a relatively old conjecture that the wormholes of general relativity are behind the physics and mathematics of quantum entanglement theory. To do this we base ourselves on the comprehensive set theoretical and topological machinery of the Cantorian-fractal E-infinity spacetime theory. Going all the way in this direction we even go beyond a quantum gravity theory to a precise set theoretical understanding of what a quantum particle, a quantum wave and quantum spacetime are. As a consequence of all these results and insights we can reason that the local Casimir pressure is the difference between the zero set quantum particle topological pressure and the empty set quantum wave topological pressure which acts as a wormhole “connecting” two different quantum particles with varying degrees of entanglement corresponding to varying degrees of emptiness of the empty set (wormhole). Our final result generalizes the recent conceptual equation of Susskind and Maldacena ER = EPR to become ZMG = ER = EPR where ZMG stands for zero measure Rindler-KAM geometry (of spacetime). These results were only possible because of the ultimate simplicity of our exact model based on Mauldin-Williams random Cantor sets and the corresponding exact Hardy’s quantum entanglement probability P(H) = where is the Hausdorff dimension of the topologically zero dimensional random Cantor thin set, i.e. a zero measure set and . On the other hand the positive measure spatial separation between the zero sets is a fat Cantor empty set possessing a Hausdorff dimension equal while its Menger-Urysohn topological dimension is a negative value equal minus one. This is the mathematical quintessence of a wormhole paralleling multiple connectivity in classical topology. It is both physically there because of the positive measure and not there because of the negative topological dimension. 展开更多
关键词 Zero Measure Thin Cantor Set Fat Cantor Set Cantorian fractal KAM spacetime Quantum Gravity Casimir Pressure E-Infinity Theory
下载PDF
A Combined Heterotic String and Kähler Manifold Elucidation of Ordinary Energy,Dark Matter,Olbers’s Paradox and Pure Dark Energy Density of the Cosmos
3
作者 Mohamed S.El Naschie 《Journal of Modern Physics》 2017年第7期1101-1118,共18页
We utilize the topological-geometrical structure imposed by the Heterotic superstring theory on spacetime in conjunction with the K3 K&auml;hler manifold to explain the mysterious nature of dark matter and its cou... We utilize the topological-geometrical structure imposed by the Heterotic superstring theory on spacetime in conjunction with the K3 K&auml;hler manifold to explain the mysterious nature of dark matter and its coupling to the pure dark energy density of the cosmos. The analogous situations in the case of a Kerr black hole as well as the redundant components of the Riemannian tensor are pointed out and the final result was found to be in complete agreement with all previous theoretical ones as well as all recent accurate measurements and cosmic observations. We conclude by commenting briefly on the Cantorian model of Zitterbewegung and the connection between Olbers’s paradox and dark energy. 展开更多
关键词 Heterotic Strings K3 Kahler Manifold Dark Matter Pure Heterotic Dark Energy Einstein’s Relativity Accelerated Cosmic Expansion Negative Gravity fractal spacetime E-Infinity Theory Kerr Black Holes Geometry Kaluza-Klein Theory Dvoretzky’s Theorem Empty Set Zero Set Connes Noncommutative Geometry ‘tHooft Renormalon STATE Vector Reduction Density Matrix ‘tHooft fractal spacetime Transfinite Cellular Automata Interpretation of Quantum Mechanics ZITTERBEWEGUNG Olbers’s Dark Sky Paradox
下载PDF
Max Planck Half Quanta as a Natural Explanation for Ordinary and Dark Energy of the Cosmos
4
作者 Mohamed S. El Naschie 《Journal of Modern Physics》 2016年第12期1420-1428,共9页
The work gives a natural explanation for the ordinary and dark energy density of the cosmos based on conventional quantum mechanical considerations which dates back as far as the early days of the quantum theory and s... The work gives a natural explanation for the ordinary and dark energy density of the cosmos based on conventional quantum mechanical considerations which dates back as far as the early days of the quantum theory and specifically the work of Max Planck who seems to be the first to propose the possibility of a half quanta corresponding to the ground state, i.e. the energy zero point of the vacuum. Combining these old insights with the relatively new results of Hardy’s quantum entanglement and Witten’s topological quantum field theory as well as the fractal version of M-theory, we find a remarkably simple general theory for dark energy and the Casimir effect. 展开更多
关键词 Half Quanta Dark Energy Hardy’s Entanglement Casimir Energy Topological Quantum Field Witten’s Theory Pointless Geometry Non-Commutative Geometry fractal spacetime Dark Matter tHooft Renormalization E-Infinity Theory Cantor Sets
下载PDF
From E=mc^(2) to E=mc^(2)/22—A Short Account of the Most Famous Equation in Physics and Its Hidden Quantum Entanglement Origin
5
作者 Mohamed S.El Naschie 《Journal of Quantum Information Science》 2014年第4期284-291,共8页
Einstein’s energy mass formula is shown to consist of two basically quantum components E(O) = mc2/22 and E(D) = mc2(21/22). We give various arguments and derivations to expose the quantum entanglement physics residin... Einstein’s energy mass formula is shown to consist of two basically quantum components E(O) = mc2/22 and E(D) = mc2(21/22). We give various arguments and derivations to expose the quantum entanglement physics residing inside a deceptively simple expression E = mc2. The true surprising aspect of the present work is however the realization that all the involved “physics” in deriving the new quantum dissection of Einstein’s famous formula of special relativity is actually a pure mathematical necessity anchored in the phenomena of volume concentration of convex manifold in high dimensional quasi Banach spaces. Only an endophysical experiment encompassing the entire universe such as COBE, WMAP, Planck and supernova analysis could have discovered dark energy and our present dissection of Einstein’s marvelous formula. 展开更多
关键词 Special Relativity Varying Speed of Light Hardy’s Quantum Entanglement Dark Energy Measure Concentration in Banach Space ‘tHooft fractal spacetime Witten fractal M-Theory E-Infinity Theory Transfinite Cellular Automata Golden Mean Computer Endophysics Finkelstein-Rossler-Primas Theory of Interface
下载PDF
Kähler Dark Matter, Dark Energy Cosmic Density and Their Coupling 被引量:2
6
作者 Mohamed S. El Naschie 《Journal of Modern Physics》 2016年第14期1953-1962,共11页
We utilize homology and co-homology of a K3-K&#228;hler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) or... We utilize homology and co-homology of a K3-K&#228;hler manifold as a model for spacetime to derive the cosmic energy density of our universe and subdivide it into its three fundamental constituents, namely: 1) ordinary energy;2) pure dark energy and 3) dark matter. In addition, the fundamental coupling of dark matter to pure dark energy is analyzed in detail for the first time. Finally, the so-obtained results are shown to be in astounding agreement with all previous theoretical analysis as well as with actual accurate cosmic measurements. 展开更多
关键词 Kähler Topology Dark Matter E-INFINITY Super Strings Golden Mean Computer Kerr Black Hole Geometry Accelerated Cosmic Expansion fractal Cantorian spacetime
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部