期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于SqueezeNet和FractalNet混合模型的图像分类研究
1
作者 王子牛 王许 +2 位作者 高建瓴 陈娅先 吴建华 《软件》 2019年第10期46-49,共4页
针对传统卷积神经网络(如Lenet5)在图像的多分类任务中识别率不高、较新的卷积神经网络(如VGG16)在图像的多分类任务中待优化的参数达到千万级别的问题。采用将SqueezeNet 神经网络与FractalNet 神经网络相结合的方法。本文使用SqueezeN... 针对传统卷积神经网络(如Lenet5)在图像的多分类任务中识别率不高、较新的卷积神经网络(如VGG16)在图像的多分类任务中待优化的参数达到千万级别的问题。采用将SqueezeNet 神经网络与FractalNet 神经网络相结合的方法。本文使用SqueezeNet 神经网络中的Fire Module 来减少模型的参数、FractalNet 神经网络的基本架构来保证神经网络模型的准确度。结果显示:在其它超参数基本相同的前提下,迭代40 代时,DenseNet 模型的测试集准确度为79.92%,而混合模型的测试集准确度为84.56%,其待优化的参数降至二百万个左右,故混合模型对数据的拟合能力更强,模型参数保持较低水平。 展开更多
关键词 SqueezeNet fractalnet DenseNet 图像分类 混合模型 卷积神经网络
下载PDF
基于IEWT和IFractalNet的滚动轴承故障诊断 被引量:4
2
作者 杜小磊 陈志刚 +1 位作者 王衍学 张楠 《振动与冲击》 EI CSCD 北大核心 2020年第24期134-142,共9页
针对传统滚动轴承故障诊断方法易受噪声干扰,过度依赖专家经验等问题,提出了一种基于改进经验小波变换(IEWT)和改进分形网络(IFractalNet)的诊断方法。改进经验小波变换Fourier谱的分割方式,将轴承原始振动信号自适应分解为若干本征模... 针对传统滚动轴承故障诊断方法易受噪声干扰,过度依赖专家经验等问题,提出了一种基于改进经验小波变换(IEWT)和改进分形网络(IFractalNet)的诊断方法。改进经验小波变换Fourier谱的分割方式,将轴承原始振动信号自适应分解为若干本征模态分量,并利用基于峭度、相关系数、能量比的综合评价指标筛选出最能反映信号故障特征的本征模态分量(imfs);针对样本集不平衡问题改进分形网络的损失函数和激活函数;将筛选到的imfs重构并输入IFractalNet进行自动特征提取与故障识别。实验结果表明:提出方法能够有效地对滚动轴承进行多种故障类型和多种故障程度的识别,避免了复杂的人工特征提取过程,相较于其他方法具有更高的泛化能力、特征提取能力和故障识别能力。 展开更多
关键词 滚动轴承 改进经验小波变换(IEWT) 改进分形网络(Ifractalnet) 故障诊断
下载PDF
Xception-Fractalnet:Hybrid Deep Learning Based Multi-Class Classification of Alzheimer’s Disease
3
作者 Mudiyala Aparna Battula Srinivasa Rao 《Computers, Materials & Continua》 SCIE EI 2023年第3期6909-6932,共24页
Neurological disorders such as Alzheimer’s disease(AD)are very challenging to treat due to their sensitivity,technical challenges during surgery,and high expenses.The complexity of the brain structures makes it diffi... Neurological disorders such as Alzheimer’s disease(AD)are very challenging to treat due to their sensitivity,technical challenges during surgery,and high expenses.The complexity of the brain structures makes it difficult to distinguish between the various brain tissues and categorize AD using conventional classification methods.Furthermore,conventional approaches take a lot of time and might not always be precise.Hence,a suitable classification framework with brain imaging may produce more accurate findings for early diagnosis of AD.Therefore in this paper,an effective hybrid Xception and Fractalnet-based deep learning framework are implemented to classify the stages of AD into five classes.Initially,a network based on Unet++is built to segment the tissues of the brain.Then,using the segmented tissue components as input,the Xception-based deep learning technique is employed to extract high-level features.Finally,the optimized Fractalnet framework is used to categorize the disease condition using the acquired characteristics.The proposed strategy is tested on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset that accurately segments brain tissues with a 98.45%of dice similarity coefficient(DSC).Additionally,for themulticlass classification of AD,the suggested technique obtains an accuracy of 99.06%.Moreover,ANOVA statistical analysis is also used to evaluate if the groups are significant or not.The findings show that the suggested model outperforms various stateof-the-art methods in terms of several performance metrics. 展开更多
关键词 fractalnet deep learning xception unet++ alzheimer’s disease magnetic resonance imaging
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部