In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-...In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result.展开更多
In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fra...In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.展开更多
This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
We study the existence of solutions to the second order three-point boundary value problem:{x″(t)+f(t,x(t),x′(t))=0,t≠ti,△x(ti)=Ii(x(ti),x′(ti)),i=1,2,…,k,△x′(ti)=Ji(x(ti),x′(t)),i=1...We study the existence of solutions to the second order three-point boundary value problem:{x″(t)+f(t,x(t),x′(t))=0,t≠ti,△x(ti)=Ii(x(ti),x′(ti)),i=1,2,…,k,△x′(ti)=Ji(x(ti),x′(t)),i=1,2,…,k,x(0)=0=x(1)-αx(η),where 0〈η〈1,α∈R,and f:[0,1]×R×R→R,Ii:R×R→R,Ji:R×R→R(i=1,2,…,k)are continuous. Our results is new and different from previous results. In particular, we obtain the Green function of the problem, which makes the problem simpler.展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
This paper is devoted to study the existence and uniqueness of solutions to a boundary value problem of nonlinear fractional differential equation with impulsive effects.The arguments are based upon Schauder and Banac...This paper is devoted to study the existence and uniqueness of solutions to a boundary value problem of nonlinear fractional differential equation with impulsive effects.The arguments are based upon Schauder and Banach fixed-point theorems. We improve and generalize the results presented in[B.Ahmad,S.Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations,Nonlinear Analysis:Hybrid Systems,3(2009),251- 258].展开更多
This paper studies the existence and uniqueness of solutions for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative by employing the Ban...This paper studies the existence and uniqueness of solutions for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative by employing the Banach’s contraction principle and the Schauder’s fixed point theorem. In addition, an example is given to demonstrate the application of our main results.展开更多
In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution...In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.展开更多
In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
Aim To investigate the boundary value problem for second order functional differentiai equations with impulses. Methods The fixed point principle was used to establish our results. Results and Conclusion The results o...Aim To investigate the boundary value problem for second order functional differentiai equations with impulses. Methods The fixed point principle was used to establish our results. Results and Conclusion The results of the esistence, the uniqueness and the continuous dependence on aprameter of soiutions of the boundary value problems for second order functional differential equations with impulses are obtained.展开更多
Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 ...Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.展开更多
A class of the boundary value problem for fractional order nonlinear differential equation with Riemann-Liouville fractional derivative on the half line was studied. By using the coincidence degree theory due to Mawhi...A class of the boundary value problem for fractional order nonlinear differential equation with Riemann-Liouville fractional derivative on the half line was studied. By using the coincidence degree theory due to Mawhin and constructing the suitable operators,the existence theorem of at least one solution has been established. An example is given to illustrate our result.展开更多
In this paper we discuss stochastic differential equations with a kind of periodic boundary value conditions(in sense of mean value). Appealing to the decomposition of equations, the existence of solutions is obtain...In this paper we discuss stochastic differential equations with a kind of periodic boundary value conditions(in sense of mean value). Appealing to the decomposition of equations, the existence of solutions is obtained by using the contraction mapping principle and Leray-Schauder fixed point theorem, respectively.展开更多
This paper considers the following boundary value problems for functional differential equations: x' (t) = f(t, xt) (0<t<b) ,x0 = x1, and x'(t) = f(t,xt, x' (t)) (0<t<b) , x0 = , x(b) = B. By u...This paper considers the following boundary value problems for functional differential equations: x' (t) = f(t, xt) (0<t<b) ,x0 = x1, and x'(t) = f(t,xt, x' (t)) (0<t<b) , x0 = , x(b) = B. By using certain fixed point theorem based on degree theory,some sufficient conditions for solvability of the above problems are given.展开更多
In this paper,we present a new technique to study nonlinear stochastic differential equations with periodic boundary value condition(in the sense of expec- tation).Our main idea is to decompose the stochastic process ...In this paper,we present a new technique to study nonlinear stochastic differential equations with periodic boundary value condition(in the sense of expec- tation).Our main idea is to decompose the stochastic process into a deterministic term and a new stochastic term with zero mean value.Then by using the contraction mapping principle and Leray-Schauder fixed point theorem,we obtain the existence theorem.Finally,we explain our main results by an elementary example.展开更多
In this paper,we investigate the existence of symmetric solutions of singular nonlocal boundary value problems for systems of differential equations.Our analysis relies on a nonlinear alternative of Leray-schauder typ...In this paper,we investigate the existence of symmetric solutions of singular nonlocal boundary value problems for systems of differential equations.Our analysis relies on a nonlinear alternative of Leray-schauder type.Our results presented here unify,generalize and significantly improve many known results in the literature.展开更多
Abstract In this paper, the fixed point theorem is applied to investigate the existence of solutions of Sturm Liouville boundary value problems for nonlinear second order impulsive differential equations in Banach spa...Abstract In this paper, the fixed point theorem is applied to investigate the existence of solutions of Sturm Liouville boundary value problems for nonlinear second order impulsive differential equations in Banach spaces.展开更多
In this paper,by using the Krasnoselskii xed point theorem,we prove the existence one or multiple of positive solutions of fourth-ordernonlinear dierence equations with two point boundary value problem.
In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results a...In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.展开更多
This paper deals with the existence of triple positive solutions for the 1-dimensional equation of Laplace-type (φ(x′(t)))′+q(t)f(t,x(t),x′(t))=0,t∈(0,1),subject to the following boundary condit...This paper deals with the existence of triple positive solutions for the 1-dimensional equation of Laplace-type (φ(x′(t)))′+q(t)f(t,x(t),x′(t))=0,t∈(0,1),subject to the following boundary condition:a1φ(x(0))-a2φ(x'(0))=0,a3φ(x(1))+a4φ(x'(1))=0,where φ is an odd increasing homogeneous homeomorphism. By using a new fixed point theorem, sufficient conditions are obtained that guarantee the existence of at least three positive solu- tions. The emphasis here is that the nonlinear term f is involved with the first order derivative explicitly.展开更多
基金Supported by the National Nature Science Foundation of China(11071001)Supported by the Key Program of Ministry of Education of China(205068)
文摘In this paper, we consider the positive solutions of fractional three-point boundary value problem of the form Dο^α+u(t)+f(t,u(t),u'(t),…,u^(n-3)(5),u^(n-2)(t))=0,u^(i)(0)=0,0≤i≤n-2,u^(n-2)(1)-βu^(n-2)(ξ)=0,where 0〈t〈1,n-1〈α≤n,n≥2,ξ Е(0,1),βξ^a-n〈1. We first transform it into another equivalent boundary value problem. Then, we derive the Green's function for the equivalent boundary value problem and show that it satisfies certain properties. At last, by using some fixed-point theorems, we obtain the existence of positive solution for this problem. Example is given to illustrate the effectiveness of our result.
基金Supported by the Research Fund for the Doctoral Program of High Education of China(20094407110001)Supported by the NSF of Guangdong Province(10151063101000003)
文摘In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.
文摘This paper is concerned with the boundary value problem of a nonlinear fractional differential equation. By means of Schauder fixed-point theorem, an existence result of solution is obtained.
基金Supported by the National Natural Science Foundation of China(10371006)
文摘We study the existence of solutions to the second order three-point boundary value problem:{x″(t)+f(t,x(t),x′(t))=0,t≠ti,△x(ti)=Ii(x(ti),x′(ti)),i=1,2,…,k,△x′(ti)=Ji(x(ti),x′(t)),i=1,2,…,k,x(0)=0=x(1)-αx(η),where 0〈η〈1,α∈R,and f:[0,1]×R×R→R,Ii:R×R→R,Ji:R×R→R(i=1,2,…,k)are continuous. Our results is new and different from previous results. In particular, we obtain the Green function of the problem, which makes the problem simpler.
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
基金The NSF(10971221)of ChinaThe Youth Research Found(2009QS07)of China University of Mining and Technology,Beijing
文摘This paper is devoted to study the existence and uniqueness of solutions to a boundary value problem of nonlinear fractional differential equation with impulsive effects.The arguments are based upon Schauder and Banach fixed-point theorems. We improve and generalize the results presented in[B.Ahmad,S.Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations,Nonlinear Analysis:Hybrid Systems,3(2009),251- 258].
文摘This paper studies the existence and uniqueness of solutions for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative by employing the Banach’s contraction principle and the Schauder’s fixed point theorem. In addition, an example is given to demonstrate the application of our main results.
基金Supported by the NNSF of China(ll071001) Supported by the NSF" of the Anhui Higher Education Institutions of China(KJ2013B276) Supporied by the Key Program of the Natural Science Foundation for the Excellent Youth Scholars of Anhui Higher Education Institutions of China (2013SQRL142ZD)
文摘In this paper, we investigate the existence of solution for a class of impulse boundary value problem of nonlinear fractional functional differential equation of mixed type. We obtain the existence results of solution by applying some well-known fixed point theorems. An example is given to illustrate the effectiveness of our result.
文摘In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
文摘Aim To investigate the boundary value problem for second order functional differentiai equations with impulses. Methods The fixed point principle was used to establish our results. Results and Conclusion The results of the esistence, the uniqueness and the continuous dependence on aprameter of soiutions of the boundary value problems for second order functional differential equations with impulses are obtained.
基金Supported by the Natural Science Foundation of Hunan Province(06JJ50008) Supported by the Natural Science Foundation of Guangdong Province(7004569)
文摘Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.
基金National Natural Science Foundation of China(No.11271248)
文摘A class of the boundary value problem for fractional order nonlinear differential equation with Riemann-Liouville fractional derivative on the half line was studied. By using the coincidence degree theory due to Mawhin and constructing the suitable operators,the existence theorem of at least one solution has been established. An example is given to illustrate our result.
基金The NSF(1308085MA01,1508085QA01)of Anhui Provincethe Provincial Natural Science Research Project(KJ2014A010)of Anhui Colleges+1 种基金the National Natural Science Youth Foundation(11301004)of ChinaOutstanding Youth Key Foundation(2013SQRL087ZD)of Colleges and Universities in Anhui Province
文摘In this paper we discuss stochastic differential equations with a kind of periodic boundary value conditions(in sense of mean value). Appealing to the decomposition of equations, the existence of solutions is obtained by using the contraction mapping principle and Leray-Schauder fixed point theorem, respectively.
文摘This paper considers the following boundary value problems for functional differential equations: x' (t) = f(t, xt) (0<t<b) ,x0 = x1, and x'(t) = f(t,xt, x' (t)) (0<t<b) , x0 = , x(b) = B. By using certain fixed point theorem based on degree theory,some sufficient conditions for solvability of the above problems are given.
文摘In this paper,we present a new technique to study nonlinear stochastic differential equations with periodic boundary value condition(in the sense of expec- tation).Our main idea is to decompose the stochastic process into a deterministic term and a new stochastic term with zero mean value.Then by using the contraction mapping principle and Leray-Schauder fixed point theorem,we obtain the existence theorem.Finally,we explain our main results by an elementary example.
基金Supported by the National Natural Science Foundation of China(10771117)the Foundation of School of Mathematics and System Science,Shandong University(306001)
文摘In this paper,we investigate the existence of symmetric solutions of singular nonlocal boundary value problems for systems of differential equations.Our analysis relies on a nonlinear alternative of Leray-schauder type.Our results presented here unify,generalize and significantly improve many known results in the literature.
文摘Abstract In this paper, the fixed point theorem is applied to investigate the existence of solutions of Sturm Liouville boundary value problems for nonlinear second order impulsive differential equations in Banach spaces.
文摘In this paper,by using the Krasnoselskii xed point theorem,we prove the existence one or multiple of positive solutions of fourth-ordernonlinear dierence equations with two point boundary value problem.
文摘In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.
基金Supported by the NNSF of China(10371006) Tianyuan Youth Grant of China(10626033).
文摘This paper deals with the existence of triple positive solutions for the 1-dimensional equation of Laplace-type (φ(x′(t)))′+q(t)f(t,x(t),x′(t))=0,t∈(0,1),subject to the following boundary condition:a1φ(x(0))-a2φ(x'(0))=0,a3φ(x(1))+a4φ(x'(1))=0,where φ is an odd increasing homogeneous homeomorphism. By using a new fixed point theorem, sufficient conditions are obtained that guarantee the existence of at least three positive solu- tions. The emphasis here is that the nonlinear term f is involved with the first order derivative explicitly.