期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Convergence and Superconvergence of Fully Discrete Finite Element for Time Fractional Optimal Control Problems 被引量:1
1
作者 Yuelong Tang 《American Journal of Computational Mathematics》 2021年第1期53-63,共11页
In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and &l... In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and <em>L</em>1 scheme in time. The control is obtained by the variational discretization technique. The main purpose of this work is to derive the convergence and superconvergence. A numerical example is presented to validate our theoretical results. 展开更多
关键词 Time fractional Optimal Control problems Finite Element Convergence and Superconvergence
下载PDF
A Priori Error Estimates for Spectral Galerkin Approximations of Integral State-Constrained Fractional Optimal Control Problems
2
作者 Juan Zhang Jiabin Song Huanzhen Chen 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第3期568-582,共15页
The fractional optimal control problem leads to significantly increased computational complexity compared to the corresponding classical integer-order optimal control problem,due to the global properties of fractional... The fractional optimal control problem leads to significantly increased computational complexity compared to the corresponding classical integer-order optimal control problem,due to the global properties of fractional differential operators.In this paper,we focus on an optimal control problem governed by fractional differential equations with an integral constraint on the state variable.By the proposed first-order optimality condition consisting of a Lagrange multiplier,we design a spectral Galerkin discrete scheme with weighted orthogonal Jacobi polynomials to approximate the resulting state and adjoint state equations.Furthermore,a priori error estimates for state,adjoint state and control variables are discussed in details.Illustrative numerical tests are given to demonstrate the validity and applicability of our proposed approximations and theoretical results. 展开更多
关键词 fractional optimal control problem state constraint spectral method Jacobi polynomial a priori error estimate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部