In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and &l...In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and <em>L</em>1 scheme in time. The control is obtained by the variational discretization technique. The main purpose of this work is to derive the convergence and superconvergence. A numerical example is presented to validate our theoretical results.展开更多
The fractional optimal control problem leads to significantly increased computational complexity compared to the corresponding classical integer-order optimal control problem,due to the global properties of fractional...The fractional optimal control problem leads to significantly increased computational complexity compared to the corresponding classical integer-order optimal control problem,due to the global properties of fractional differential operators.In this paper,we focus on an optimal control problem governed by fractional differential equations with an integral constraint on the state variable.By the proposed first-order optimality condition consisting of a Lagrange multiplier,we design a spectral Galerkin discrete scheme with weighted orthogonal Jacobi polynomials to approximate the resulting state and adjoint state equations.Furthermore,a priori error estimates for state,adjoint state and control variables are discussed in details.Illustrative numerical tests are given to demonstrate the validity and applicability of our proposed approximations and theoretical results.展开更多
文摘In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and <em>L</em>1 scheme in time. The control is obtained by the variational discretization technique. The main purpose of this work is to derive the convergence and superconvergence. A numerical example is presented to validate our theoretical results.
基金This work was partly supported by National Natural Science Foundation of China(Grant Nos.:12101283,12271233 and 12171287)Natural Science Foundation of Shandong Province(Grant Nos.:ZR2019YQ05,2019KJI003,and ZR2016JL004).
文摘The fractional optimal control problem leads to significantly increased computational complexity compared to the corresponding classical integer-order optimal control problem,due to the global properties of fractional differential operators.In this paper,we focus on an optimal control problem governed by fractional differential equations with an integral constraint on the state variable.By the proposed first-order optimality condition consisting of a Lagrange multiplier,we design a spectral Galerkin discrete scheme with weighted orthogonal Jacobi polynomials to approximate the resulting state and adjoint state equations.Furthermore,a priori error estimates for state,adjoint state and control variables are discussed in details.Illustrative numerical tests are given to demonstrate the validity and applicability of our proposed approximations and theoretical results.