We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their...We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.展开更多
In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptot...In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptotic uniform stability and Mittag Leffler stability.The approach presented is based on the specially introduced piecewise continuous Lyapunov functions.Furthermore,some numerical examples are given to show the effectiveness of our obtained theoretical results.展开更多
In this article,we consider the following coupled fractional nonlinear Schrödinger system in R^{(−Δ)su+P(x)u=μ1|u|^2p−2u+β|u|p|u|p−2u,x∈RN,(−Δ)sv+Q(x)v=μ2|v|^2p−2v+β|v|p|v|p−2v,x∈RN,u,v∈Hs(RN),where N≥2...In this article,we consider the following coupled fractional nonlinear Schrödinger system in R^{(−Δ)su+P(x)u=μ1|u|^2p−2u+β|u|p|u|p−2u,x∈RN,(−Δ)sv+Q(x)v=μ2|v|^2p−2v+β|v|p|v|p−2v,x∈RN,u,v∈Hs(RN),where N≥2,0<s<1,1<p<NN−2s,μ1>0,μ2>0 andβ∈R is a coupling constant.We prove that it has infinitely many non-radial positive solutions under some additional conditions on P(x),Q(x),p andβ.More precisely,we will show that for the attractive case,it has infinitely many non-radial positive synchronized vector solutions,and for the repulsive case,infinitely many non-radial positive segregated vector solutions can be found,where we assume that P(x)and Q(x)satisfy some algebraic decay at infinity.展开更多
In this article, we study positive solutions to the system{Aαu(x) = Cn,αPV∫Rn(a1(x-y)(u(x)-u(y)))/(|x-y|n+α)dy = f(u(x), Bβv(x) = Cn,βPV ∫Rn(a2(x-y)(v(x)-v(y))/(|x-y|n+β)dy ...In this article, we study positive solutions to the system{Aαu(x) = Cn,αPV∫Rn(a1(x-y)(u(x)-u(y)))/(|x-y|n+α)dy = f(u(x), Bβv(x) = Cn,βPV ∫Rn(a2(x-y)(v(x)-v(y))/(|x-y|n+β)dy = g(u(x),v(x)).To reach our aim, by using the method of moving planes, we prove a narrow region principle and a decay at infinity by the iteration method. On the basis of these results, we conclude radial symmetry and monotonicity of positive solutions for the problems involving the weighted fractional system on an unit ball and the whole space. Furthermore, non-existence of nonnegative solutions on a half space is given.展开更多
In this paper,we prove the existence of positive solutions to the following weighted fractional system involving distinct weighted fractional Laplacians with gradient terms:{(−Δ)_(a/1)^(α/2)u1(x)=u_(1)^(q11)(x)+u_(2...In this paper,we prove the existence of positive solutions to the following weighted fractional system involving distinct weighted fractional Laplacians with gradient terms:{(−Δ)_(a/1)^(α/2)u1(x)=u_(1)^(q11)(x)+u_(2)^(q12)(x)+h_(1)(x,u_(1)(x),u_(2)(x),∇u_(1)(x),∇u_(2)(x)),x∈Ω,(−Δ)_(a2)^(β/2)u2(x)=u_(1)^(q21)(x)+u_(2)^(q22)(x)+h_(2)(x,u_(1)(x),u_(2)(x),∇u_(1)(x),∇u_(2)(x)),x∈Ω,u_(1)(x)=0,u_(2)(x)=0,x∈R^(n)∖Ω.Here(−Δ)_(a1)^(α/2) and(−Δ)_(a2)^(β/2) denote weighted fractional Laplacians andΩ⊂R^(n) is a C^(2) bounded domain.It is shown that under some assumptions on h_(i)(i=1,2),the problem admits at least one positive solution(u_(1)(x),u_(2)(x)).We first obtain the{a priori}bounds of solutions to the system by using the direct blow-up method of Chen,Li and Li.Then the proof of existence is based on a topological degree theory.展开更多
An efficient identification algorithm is given for commensurate order linear time-invariant fractional systems. This algorithm can identify not only model coefficients of the system, but also its differential order at...An efficient identification algorithm is given for commensurate order linear time-invariant fractional systems. This algorithm can identify not only model coefficients of the system, but also its differential order at the same time. The basic idea is to change the system matrix into a diagonal one through basis transformation. This makes it possible to turn the system’s input-output relationships into the summation of several simple subsystems, and after the identification of these subsystems, the whole identification system is obtained which is algebraically equivalent to the former system. Finally an identification example verifies the effectiveness of the method previously mentioned.展开更多
Dear Editor,Dynamics and digital circuit implementation of the fractional-order Lorenz system are investigated by employing Adomian decomposition method(ADM).Dynamics of the fractional-order Lorenz system with derivat...Dear Editor,Dynamics and digital circuit implementation of the fractional-order Lorenz system are investigated by employing Adomian decomposition method(ADM).Dynamics of the fractional-order Lorenz system with derivative order and parameter varying is analyzed by means of Lyapunov exponents(LEs),bifurcation diagram.展开更多
In this paper,we are concerned with solutions to the fractional Schrodinger-Poisson system■ with prescribed mass ∫_(R^(3))|u|^(2)dx=a^(2),where a> 0 is a prescribed number,μ> 0 is a paremeter,s ∈(0,1),2 <...In this paper,we are concerned with solutions to the fractional Schrodinger-Poisson system■ with prescribed mass ∫_(R^(3))|u|^(2)dx=a^(2),where a> 0 is a prescribed number,μ> 0 is a paremeter,s ∈(0,1),2 <q <2_(s)^(*),and 2_(s)^(*)=6/(3-2s) is the fractional critical Sobolev exponent.In the L2-subcritical case,we show the existence of multiple normalized solutions by using the genus theory and the truncation technique;in the L^(2)-supercritical case,we obtain a couple of normalized solutions by developing a fiber map.Under both cases,to recover the loss of compactness of the energy functional caused by the doubly critical growth,we need to adopt the concentration-compactness principle.Our results complement and improve upon some existing studies on the fractional Schrodinger-Poisson system with a nonlocal critical term.展开更多
The dynamics of wave packets carrying a spatiotemporal vortex in the spatial fractional system is still an open problem.The difficulty stems from the fact that the fractional Laplacian derivative is essentially a nonl...The dynamics of wave packets carrying a spatiotemporal vortex in the spatial fractional system is still an open problem.The difficulty stems from the fact that the fractional Laplacian derivative is essentially a nonlocal operator,and the vortex is space-time coupled.Here,we investigate the transmission of spatiotemporal vortices in the spatial fractional wave equation(FWE)and demonstrate the effects of linewidth,vortex topological charge,and linear chirp modulation on the transmission of Bessel-type spatiotemporal vortex pulses(BSTVPs).Under narrowband conditions,we find that the propagation of BSTVP in the FWE can be seen as the coherent superposition of two linearly shifted half-BSTVPs and can reveal orbital angular momentum backflow for the half-BSTVP.Our analysis can be extended to other spatiotemporal vortex pulses.展开更多
This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering a...This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering and science.An approximate solution of the system is sought in the formof the finite series over the Müntz polynomials.By using the collocation procedure in the time interval,one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure.This technique also serves as the basis for solving the time-fractional partial differential equations(PDEs).The modified radial basis functions are used for spatial approximation of the solution.The collocation in the solution domain transforms the equation into a system of fractional ordinary differential equations similar to the one mentioned above.Several examples have verified the performance of the proposed novel technique with high accuracy and efficiency.展开更多
This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the ...This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the sake of overcoming the singularity, sequences of approximate solutions to the boundary value problem are obtained by applying the fixed point index theory on the cone. Next, it is demonstrated that these sequences of approximate solutions are uniformly bounded and equicontinuous. The main results are then established through the Ascoli-Arzelà theorem. Ultimately, an instance is worked out to test and verify the validity of the main results.展开更多
The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and ...The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.展开更多
In this paper,we study in a constructive way the stabilization problem of fractional bilinear systems with multiple inputs.Using the quadratic Lyapunov functions and some additional hypotheses on the unit sphere,we co...In this paper,we study in a constructive way the stabilization problem of fractional bilinear systems with multiple inputs.Using the quadratic Lyapunov functions and some additional hypotheses on the unit sphere,we construct stabilizing feedback laws for the considered fractional bilinear system.A numerical example is given to illustrate the efficiency of the obtained result.展开更多
A fractional nonlinear system with power damping term is introduced to study the forced vibration system in order to solve the resonance and bifurcation problems between grinding wheel and steel bar during robot grind...A fractional nonlinear system with power damping term is introduced to study the forced vibration system in order to solve the resonance and bifurcation problems between grinding wheel and steel bar during robot grinding.The robot,grinding wheel and steel bar are reduced to a spring-damping second-order system model.The implicit function equations of vibration amplitude of the dynamic system with coulomb friction damping,linear damping,square damping and cubic damping are obtained by average method.The stability of the system is analyzed and explained,and the stability condition of the system is proposed.Then,the amplitude-frequency characteristic curves of the system under different fractional differential orders,nonlinear stiffness parameters,fractional differential term coefficients and external excitation amplitude are analyzed.It is shown that the fractional differential term in the dynamic system is the damping characteristic.Then the influence of four kinds of damping on the vibration amplitude of the system under the same parameter is investigated and it is proved that the cubic damping suppresses the vibration of the system to the maximum extent.Finally,based on the idea that the equilibrium point of the system is the constant part of the Fourier series expansion term,the bifurcation behavior caused by the change of damping parameters in linear damping,square damping and cubic damping systems with different values of fractional differential order is investigated.展开更多
This research aims to understand the fractional order dynamics of the deadly Nipah virus(NiV)disease.We focus on using piecewise derivatives in the context of classical and singular kernels of power operators in the C...This research aims to understand the fractional order dynamics of the deadly Nipah virus(NiV)disease.We focus on using piecewise derivatives in the context of classical and singular kernels of power operators in the Caputo sense to investigate the crossover behavior of the considered dynamical system.We establish some qualitative results about the existence and uniqueness of the solution to the proposed problem.By utilizing the Newtonian polynomials interpolation technique,we recall a powerful algorithm to interpret the numerical findings for the aforesaid model.Here,we remark that the said viral infection is caused by an RNA type virus which can transmit from animals and also from an infected person to person.Fruits bats which are also known as flying foxes are one of the sources of transmission of NiV disease.Here in this work,we investigate its transmission mechanism through some new concepts of fractional calculus for further analysis and prediction.We present the approximate results for different compartments using different fractional orders.By using the piecewise derivative concept,we detect the crossover ormulti-steps behavior in the transmission dynamics of the mentioned disease.Therefore,the considered form of the derivative is used to deal with problems exhibiting crossover behaviors.展开更多
This study proposes a novel fractional discrete-time macroeconomic system with incommensurate order.The dynamical behavior of the proposed macroeconomic model is investigated analytically and numerically.In particular...This study proposes a novel fractional discrete-time macroeconomic system with incommensurate order.The dynamical behavior of the proposed macroeconomic model is investigated analytically and numerically.In particular,the zero equilibrium point stability is investigated to demonstrate that the discrete macroeconomic system exhibits chaotic behavior.Through using bifurcation diagrams,phase attractors,the maximum Lyapunov exponent and the 0–1 test,we verified that chaos exists in the new model with incommensurate fractional orders.Additionally,a complexity analysis is carried out utilizing the approximation entropy(ApEn)and C_(0)complexity to prove that chaos exists.Finally,the main findings of this study are presented using numerical simulations.展开更多
This article studies a nonlinear fractional order Lotka-Volterra prey-predator type dynamical system.For the proposed study,we consider the model under the conformable fractional order derivative(CFOD).We investigate ...This article studies a nonlinear fractional order Lotka-Volterra prey-predator type dynamical system.For the proposed study,we consider the model under the conformable fractional order derivative(CFOD).We investigate the mentioned dynamical system for the existence and uniqueness of at least one solution.Indeed,Schauder and Banach fixed point theorems are utilized to prove our claim.Further,an algorithm for the approximate analytical solution to the proposed problem has been established.In this regard,the conformable fractional differential transform(CFDT)technique is used to compute the required results in the form of a series.Using Matlab-16,we simulate the series solution to illustrate our results graphically.Finally,a comparison of our solution to that obtained for the Caputo fractional order derivative via the perturbation method is given.展开更多
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona...Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.展开更多
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio...Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices.展开更多
BACKGROUND Left bundle branch pacing(LBBP)is a novel pacing modality of cardiac resynchronization therapy(CRT)that achieves more physiologic native ventricular activation than biventricular pacing(BiVP).AIM To explore...BACKGROUND Left bundle branch pacing(LBBP)is a novel pacing modality of cardiac resynchronization therapy(CRT)that achieves more physiologic native ventricular activation than biventricular pacing(BiVP).AIM To explore the validity of electromechanical resynchronization,clinical and echocardiographic response of LBBP-CRT.METHODS Systematic review and Meta-analysis were conducted in accordance with the standard guidelines as mentioned in detail in the methodology section.RESULTS In our analysis,the success rate of LBBP-CRT was determined to be 91.1%.LBBP CRT significantly shortened QRS duration,with significant improvement in echocardiographic parameters,including left ventricular ejection fraction,left ventricular end-diastolic diameter and left ventricular end-systolic diameter in comparison with BiVP-CRT.CONCLUSION A significant reduction in New York Heart Association class and B-type natriuretic peptide levels was also observed in the LBBP-CRT group vs BiVP-CRT group.Lastly,the LBBP-CRT cohort had a reduced pacing threshold at follow-up as compared to BiVP-CRT.展开更多
文摘We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayedmatrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.
文摘In this work,stability with respect to part of the variables of nonlinear impulsive Caputo fractional differential equations is investigated.Some effective sufficient conditions of stability,uniform stability,asymptotic uniform stability and Mittag Leffler stability.The approach presented is based on the specially introduced piecewise continuous Lyapunov functions.Furthermore,some numerical examples are given to show the effectiveness of our obtained theoretical results.
基金supported by NSF of China(11701107)NSF of Guangxi Province (2017GXNSFBA198190)+1 种基金the second author is supported by NSF of China (11501143)the PhD launch scientific research projects of Guizhou Normal University (2014)
文摘In this article,we consider the following coupled fractional nonlinear Schrödinger system in R^{(−Δ)su+P(x)u=μ1|u|^2p−2u+β|u|p|u|p−2u,x∈RN,(−Δ)sv+Q(x)v=μ2|v|^2p−2v+β|v|p|v|p−2v,x∈RN,u,v∈Hs(RN),where N≥2,0<s<1,1<p<NN−2s,μ1>0,μ2>0 andβ∈R is a coupling constant.We prove that it has infinitely many non-radial positive solutions under some additional conditions on P(x),Q(x),p andβ.More precisely,we will show that for the attractive case,it has infinitely many non-radial positive synchronized vector solutions,and for the repulsive case,infinitely many non-radial positive segregated vector solutions can be found,where we assume that P(x)and Q(x)satisfy some algebraic decay at infinity.
基金Supported by National Natural Science Foundation of China(11771354)
文摘In this article, we study positive solutions to the system{Aαu(x) = Cn,αPV∫Rn(a1(x-y)(u(x)-u(y)))/(|x-y|n+α)dy = f(u(x), Bβv(x) = Cn,βPV ∫Rn(a2(x-y)(v(x)-v(y))/(|x-y|n+β)dy = g(u(x),v(x)).To reach our aim, by using the method of moving planes, we prove a narrow region principle and a decay at infinity by the iteration method. On the basis of these results, we conclude radial symmetry and monotonicity of positive solutions for the problems involving the weighted fractional system on an unit ball and the whole space. Furthermore, non-existence of nonnegative solutions on a half space is given.
文摘In this paper,we prove the existence of positive solutions to the following weighted fractional system involving distinct weighted fractional Laplacians with gradient terms:{(−Δ)_(a/1)^(α/2)u1(x)=u_(1)^(q11)(x)+u_(2)^(q12)(x)+h_(1)(x,u_(1)(x),u_(2)(x),∇u_(1)(x),∇u_(2)(x)),x∈Ω,(−Δ)_(a2)^(β/2)u2(x)=u_(1)^(q21)(x)+u_(2)^(q22)(x)+h_(2)(x,u_(1)(x),u_(2)(x),∇u_(1)(x),∇u_(2)(x)),x∈Ω,u_(1)(x)=0,u_(2)(x)=0,x∈R^(n)∖Ω.Here(−Δ)_(a1)^(α/2) and(−Δ)_(a2)^(β/2) denote weighted fractional Laplacians andΩ⊂R^(n) is a C^(2) bounded domain.It is shown that under some assumptions on h_(i)(i=1,2),the problem admits at least one positive solution(u_(1)(x),u_(2)(x)).We first obtain the{a priori}bounds of solutions to the system by using the direct blow-up method of Chen,Li and Li.Then the proof of existence is based on a topological degree theory.
基金Sponsored by 863 Project (Grant No.2002AA517020) Developing Fund of Shanghai Science Committee (Grant No.011607033).
文摘An efficient identification algorithm is given for commensurate order linear time-invariant fractional systems. This algorithm can identify not only model coefficients of the system, but also its differential order at the same time. The basic idea is to change the system matrix into a diagonal one through basis transformation. This makes it possible to turn the system’s input-output relationships into the summation of several simple subsystems, and after the identification of these subsystems, the whole identification system is obtained which is algebraically equivalent to the former system. Finally an identification example verifies the effectiveness of the method previously mentioned.
基金supported by the National Natural Science Foundation of China(62061008,62071496,61901530)。
文摘Dear Editor,Dynamics and digital circuit implementation of the fractional-order Lorenz system are investigated by employing Adomian decomposition method(ADM).Dynamics of the fractional-order Lorenz system with derivative order and parameter varying is analyzed by means of Lyapunov exponents(LEs),bifurcation diagram.
基金supported by the BIT Research and Innovation Promoting Project(2023YCXY046)the NSFC(11771468,11971027,11971061,12171497 and 12271028)+1 种基金the BNSF(1222017)the Fundamental Research Funds for the Central Universities。
文摘In this paper,we are concerned with solutions to the fractional Schrodinger-Poisson system■ with prescribed mass ∫_(R^(3))|u|^(2)dx=a^(2),where a> 0 is a prescribed number,μ> 0 is a paremeter,s ∈(0,1),2 <q <2_(s)^(*),and 2_(s)^(*)=6/(3-2s) is the fractional critical Sobolev exponent.In the L2-subcritical case,we show the existence of multiple normalized solutions by using the genus theory and the truncation technique;in the L^(2)-supercritical case,we obtain a couple of normalized solutions by developing a fiber map.Under both cases,to recover the loss of compactness of the energy functional caused by the doubly critical growth,we need to adopt the concentration-compactness principle.Our results complement and improve upon some existing studies on the fractional Schrodinger-Poisson system with a nonlocal critical term.
基金National Key Research and Development Program of China(2022YFC2808203)National Natural Science Foundation of China(11474254,11804298).
文摘The dynamics of wave packets carrying a spatiotemporal vortex in the spatial fractional system is still an open problem.The difficulty stems from the fact that the fractional Laplacian derivative is essentially a nonlocal operator,and the vortex is space-time coupled.Here,we investigate the transmission of spatiotemporal vortices in the spatial fractional wave equation(FWE)and demonstrate the effects of linewidth,vortex topological charge,and linear chirp modulation on the transmission of Bessel-type spatiotemporal vortex pulses(BSTVPs).Under narrowband conditions,we find that the propagation of BSTVP in the FWE can be seen as the coherent superposition of two linearly shifted half-BSTVPs and can reveal orbital angular momentum backflow for the half-BSTVP.Our analysis can be extended to other spatiotemporal vortex pulses.
基金funded by the National Key Research and Development Program of China(No.2021YFB2600704)the National Natural Science Foundation of China(No.52171272)the Significant Science and Technology Project of the Ministry of Water Resources of China(No.SKS-2022112).
文摘This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering and science.An approximate solution of the system is sought in the formof the finite series over the Müntz polynomials.By using the collocation procedure in the time interval,one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure.This technique also serves as the basis for solving the time-fractional partial differential equations(PDEs).The modified radial basis functions are used for spatial approximation of the solution.The collocation in the solution domain transforms the equation into a system of fractional ordinary differential equations similar to the one mentioned above.Several examples have verified the performance of the proposed novel technique with high accuracy and efficiency.
文摘This paper discusses the existence and multiplicity of positive solutions for a class of singular boundary value problems of Hadamard fractional differential systems involving the p-Laplacian operator. First, for the sake of overcoming the singularity, sequences of approximate solutions to the boundary value problem are obtained by applying the fixed point index theory on the cone. Next, it is demonstrated that these sequences of approximate solutions are uniformly bounded and equicontinuous. The main results are then established through the Ascoli-Arzelà theorem. Ultimately, an instance is worked out to test and verify the validity of the main results.
文摘The numerical approach for finding the solution of fractional order systems of boundary value problems (BPVs) is derived in this paper. The implementation of the weighted residuals such as Galerkin, Least Square, and Collocation methods are included for solving fractional order differential equations, which is broadened to acquire the approximate solutions of fractional order systems with differentiable polynomials, namely Legendre polynomials, as basis functions. The algorithm of the residual formulations of matrix form can be coded efficiently. The interpretation of Caputo fractional derivatives is employed here. We have demonstrated these methods numerically through a few examples of linear and nonlinear BVPs. The results in absolute errors show that the present method efficiently finds the numerical solutions of fractional order systems of differential equations.
文摘In this paper,we study in a constructive way the stabilization problem of fractional bilinear systems with multiple inputs.Using the quadratic Lyapunov functions and some additional hypotheses on the unit sphere,we construct stabilizing feedback laws for the considered fractional bilinear system.A numerical example is given to illustrate the efficiency of the obtained result.
基金supported by the National Key Research and Development Program of China(No.2018YFB1308702)the Graduate Education Innovation Program of Shanxi Provence(No.2020BY142)+1 种基金the National Natural Science Foundation of China(Nos.51905367,51905372,52105557)the Specipal Funding for Guiding Local Scientific and Technological Development of the Central(No.YDZX20191400002149).
文摘A fractional nonlinear system with power damping term is introduced to study the forced vibration system in order to solve the resonance and bifurcation problems between grinding wheel and steel bar during robot grinding.The robot,grinding wheel and steel bar are reduced to a spring-damping second-order system model.The implicit function equations of vibration amplitude of the dynamic system with coulomb friction damping,linear damping,square damping and cubic damping are obtained by average method.The stability of the system is analyzed and explained,and the stability condition of the system is proposed.Then,the amplitude-frequency characteristic curves of the system under different fractional differential orders,nonlinear stiffness parameters,fractional differential term coefficients and external excitation amplitude are analyzed.It is shown that the fractional differential term in the dynamic system is the damping characteristic.Then the influence of four kinds of damping on the vibration amplitude of the system under the same parameter is investigated and it is proved that the cubic damping suppresses the vibration of the system to the maximum extent.Finally,based on the idea that the equilibrium point of the system is the constant part of the Fourier series expansion term,the bifurcation behavior caused by the change of damping parameters in linear damping,square damping and cubic damping systems with different values of fractional differential order is investigated.
文摘This research aims to understand the fractional order dynamics of the deadly Nipah virus(NiV)disease.We focus on using piecewise derivatives in the context of classical and singular kernels of power operators in the Caputo sense to investigate the crossover behavior of the considered dynamical system.We establish some qualitative results about the existence and uniqueness of the solution to the proposed problem.By utilizing the Newtonian polynomials interpolation technique,we recall a powerful algorithm to interpret the numerical findings for the aforesaid model.Here,we remark that the said viral infection is caused by an RNA type virus which can transmit from animals and also from an infected person to person.Fruits bats which are also known as flying foxes are one of the sources of transmission of NiV disease.Here in this work,we investigate its transmission mechanism through some new concepts of fractional calculus for further analysis and prediction.We present the approximate results for different compartments using different fractional orders.By using the piecewise derivative concept,we detect the crossover ormulti-steps behavior in the transmission dynamics of the mentioned disease.Therefore,the considered form of the derivative is used to deal with problems exhibiting crossover behaviors.
文摘This study proposes a novel fractional discrete-time macroeconomic system with incommensurate order.The dynamical behavior of the proposed macroeconomic model is investigated analytically and numerically.In particular,the zero equilibrium point stability is investigated to demonstrate that the discrete macroeconomic system exhibits chaotic behavior.Through using bifurcation diagrams,phase attractors,the maximum Lyapunov exponent and the 0–1 test,we verified that chaos exists in the new model with incommensurate fractional orders.Additionally,a complexity analysis is carried out utilizing the approximation entropy(ApEn)and C_(0)complexity to prove that chaos exists.Finally,the main findings of this study are presented using numerical simulations.
文摘This article studies a nonlinear fractional order Lotka-Volterra prey-predator type dynamical system.For the proposed study,we consider the model under the conformable fractional order derivative(CFOD).We investigate the mentioned dynamical system for the existence and uniqueness of at least one solution.Indeed,Schauder and Banach fixed point theorems are utilized to prove our claim.Further,an algorithm for the approximate analytical solution to the proposed problem has been established.In this regard,the conformable fractional differential transform(CFDT)technique is used to compute the required results in the form of a series.Using Matlab-16,we simulate the series solution to illustrate our results graphically.Finally,a comparison of our solution to that obtained for the Caputo fractional order derivative via the perturbation method is given.
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022 M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202).
文摘Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.
基金support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802).
文摘Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices.
文摘BACKGROUND Left bundle branch pacing(LBBP)is a novel pacing modality of cardiac resynchronization therapy(CRT)that achieves more physiologic native ventricular activation than biventricular pacing(BiVP).AIM To explore the validity of electromechanical resynchronization,clinical and echocardiographic response of LBBP-CRT.METHODS Systematic review and Meta-analysis were conducted in accordance with the standard guidelines as mentioned in detail in the methodology section.RESULTS In our analysis,the success rate of LBBP-CRT was determined to be 91.1%.LBBP CRT significantly shortened QRS duration,with significant improvement in echocardiographic parameters,including left ventricular ejection fraction,left ventricular end-diastolic diameter and left ventricular end-systolic diameter in comparison with BiVP-CRT.CONCLUSION A significant reduction in New York Heart Association class and B-type natriuretic peptide levels was also observed in the LBBP-CRT group vs BiVP-CRT group.Lastly,the LBBP-CRT cohort had a reduced pacing threshold at follow-up as compared to BiVP-CRT.