The field data of shale fracturing demonstrate that the flowback performance of fracturing fluid is different from that of conventional reservoirs,where the flowback rate of shale fracturing fluid is lower than that o...The field data of shale fracturing demonstrate that the flowback performance of fracturing fluid is different from that of conventional reservoirs,where the flowback rate of shale fracturing fluid is lower than that of conventional reservoirs.At the early stage of flowback,there is no single-phase flow of the liquid phase in shale,but rather a gas-water two-phase flow,such that the single-phase flow model for tight oil and gas reservoirs is not applicable.In this study,pores and microfractures are extracted based on the experimental results of computed tomography(CT)scanning,and a spatial model of microfractures is established.Then,the influence of rough microfracture surfaces on the flow is corrected using the modified cubic law,which was modified by introducing the average deviation of the microfracture height as a roughness factor to consider the influence of microfracture surface roughness.The flow in the fracture network is simulated using the modified cubic law and the lattice Boltzmann method(LBM).The results obtained demonstrate that most of the fracturing fluid is retained in the shale microfractures,which explains the low fracturing fluid flowback rate in shale hydraulic fracturing.展开更多
The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal ...The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.展开更多
The continuum approach in fluid flow modeling is generally applied to porous geological media, but has limited applicability to fractured rocks. With the presence of a discrete fracture network relatively sparsely dis...The continuum approach in fluid flow modeling is generally applied to porous geological media, but has limited applicability to fractured rocks. With the presence of a discrete fracture network relatively sparsely distributed in the matrix, it may be difficult or erroneous to use a porous medium fluid flow model with continuum assumptions to describe the fluid flow in fractured rocks at small or even large field scales. A discrete fracture fluid flow approach incorporating a stochastic fracture network with numerical fluid flow simulations could have the capability of capturing fluid flow behaviors such as inhomogeneity and anisotropy while reflecting the changes of hydraulic features at different scales. Moreover, this approach can be implemented to estimate the size of the representative elementary volume (REV) in order to find out the scales at which a porous medium flow model could be applied, and then to determine the hydraulic conductivity tensor for fractured rocks. The following topics are focused on in this study: (a) conceptual discrete fracture fluid flow modeling incorporating a stochastic fracture network with numerical flow simulations; (b) estimation of REV and hydraulic conductivity tensor for fractured rocks utilizing a stochastic fracture network with numerical fluid flow simulations; (c) investigation of the effect of fracture orientation and density on the hydraulic conductivity and REV by implementing a stochastic fracture network with numerical fluid flow simulations, and (d) fluid flow conceptual models accounting for major and minor fractures in the 2 D or 3 D flow fields incorporating a stochastic fracture network with numerical fluid flow simulations.展开更多
A deep understanding of the geometric impacts of fracture on fracturing fluid flowback efficiency is essential for unconventional oil development. Using nuclear magnetic resonance and 2.5-dimensional matrix-fracture v...A deep understanding of the geometric impacts of fracture on fracturing fluid flowback efficiency is essential for unconventional oil development. Using nuclear magnetic resonance and 2.5-dimensional matrix-fracture visualization microfluidic models, qualitative and quantitative descriptions of the influences of connectivity between primary fracture and secondary fracture on flowback were given from core scale to pore network scale. The flow patterns of oil-gel breaking fluid two-phase flow during flowback under different fracture connectivity were analyzed. We found some counterintuitive results that non-connected secondary fracture (NCSF, not connect with artificial primary fracture and embedded in the matrix) is detrimental to flowbackefficiency. The NCSF accelerates the formation of oil channeling during flowback, resulting in a large amount of fracturing fluid trapped in the matrix, which is not beneficial for flowback. Whereas the connected secondary fracture (CSF, connected with the artificial primary fracture) is conducive to flowback. The walls of CSF become part of primary fracture, which expands the drainage area with low resistance, and delays the formation of the oil flow channel. Thus, CSF increases the high-speed flowback stage duration, thereby enhancing the flowback efficiency. The fracturing fluid flowback efficiency investigated here follows the sequence of the connected secondary fracture model (72%) > the matrix model (66%) > the non-connected secondary fracture model (38%). Our results contribute to hydraulic fracturing design and the prediction of flowback efficiency.展开更多
Reservoir damage caused by guar gum fracturing fluid and slick water seriously affects the subsequent oil and gas production. However, the invasion characteristics and retention mechanisms of fracturing fluids in the ...Reservoir damage caused by guar gum fracturing fluid and slick water seriously affects the subsequent oil and gas production. However, the invasion characteristics and retention mechanisms of fracturing fluids in the fracture-matrix zone are still unclear. In this work, a microscopic model reflecting the characteristics of the fracture-matrix zone was designed. Based on the microfluidic experimental method, the process of fracturing fluid invasion, flowback and retention in the fracture-matrix zone was investigated visually and characterized quantitatively. The factors and mechanisms affecting fracturing fluid retention in the fracture-matrix zone were analyzed and clarified. The results indicated that in the invasion process, the frontal swept range of slick water was larger than that of the guar gum fracturing fluid, and the oil displacement efficiency and damage rate were lower than those of the guar gum fracturing fluid under the same invasion pressure. With the increase in invasion pressure, the damage rate of slick water increased from 61.09% to 82.77%, and that of the guar gum fracturing fluid decreased from 93.45% to83.36%. Before subsequent oil production, the invaded fracturing fluid was mainly concentrated in the medium-high permeability area of the fracture-matrix zone. The main resistance of slick water was capillary force, while that of the guar fracturing fluid was mainly viscous resistance. The fracturing fluid retention was most serious in the low permeability region and the region near the end of the fracture.The experimental and numerical simulation results showed that increasing the production pressure difference could improve the velocity field distribution of the fracture-matrix zone, increase the flowback swept range and finally reduce the retention rate of the fracture fluid. The retention mechanisms of slick water in the fracture-matrix zone include emulsion retention and flow field retention, while those of the guar gum fracturing fluid include viscous retention and flow field retention. Emulsion retention is caused by capillary force and flow interception effect. Viscous retention is caused by the viscous resistance of polymer, while flow-field retention is caused by uneven distribution of flowback velocity.展开更多
The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved ...The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.展开更多
A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores...A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores.High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling.Taking into account both the cost and the potential damage to reservoirs,polymers with lower concentrations and molecular weights are generally preferred.In this work,the supramolecular action was integrated into the polymer,resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system.The double network gel,which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker,effectively resists temperature while minimizing permeability damage to the reservoir.The results indicate that the supramolecular polymer system with a molecular weight of(268—380)×10^(4)g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt%due to the supramolecular interaction between polymers,compared to the 0.6 wt%traditional polymer(hydrolyzed polyacrylamide,molecular weight of 1078×10^(4)g/mol).The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%,whereas the0.6 wt%traditional polymer had a rate of 0.57 cm/min.In comparison to the traditional gel with a Zrcrosslinker concentration of 0.6 wt%and an elastic modulus of 7.77 Pa,the double network gel with a higher elastic modulus(9.00 Pa)could be formed only at 0.1 wt%Zr-crosslinker,which greatly reduced the amount of residue of the fluid after gel-breaking.The viscosity of the double network gel was66 m Pa s after 2 h shearing,whereas the traditional gel only reached 27 m Pa s.展开更多
For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture ...For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection.展开更多
Low-permeability reservoirs are generally characterized by low porosity and low permeability.Obtaining high production using the traditional method is technologically challenging because it yields a low reservoir reco...Low-permeability reservoirs are generally characterized by low porosity and low permeability.Obtaining high production using the traditional method is technologically challenging because it yields a low reservoir recovery factor.In recent years,hydraulic fracturing technology is widely applied for efficiently exploiting and developing low-permeability reservoirs using a low-viscosity fluid as a fracturing fluid.However,the transportation of the proppant is inefficient in the low-viscosity fluid,and the proppant has a low piling-up height in fracture channels.These key challenges restrict the fluid(natural gas or oil)flow in fracture channels and their functional flow areas,reducing the profits of hydrocarbon exploitation.This study aimed to explore and develop a novel dandelion-bionic proppant by modifying the surface of the proppant and the fiber.Its structure was similar to that of dandelion seeds,and it had high transport and stacking efficiency in low-viscosity liquids compared with the traditional proppant.Moreover,the transportation efficiency of this newly developed proppant was investigated experimentally using six different types of fracture models(tortuous fracture model,rough fracture model,narrow fracture model,complex fracture model,large-scale single fracture model,and small-scale single fracture model).Experimental results indicated that,compared with the traditional proppant,the transportation efficiency and the packing area of the dandelion-based bionic proppant significantly improved in tap water or low-viscosity fluid.Compared with the traditional proppant,the dandelionbased bionic proppant had 0.1-4 times longer transportation length,0.3-5 times higher piling-up height,and 2-10 times larger placement area.The newly developed proppant also had some other extraordinary features.The tortuosity of the fracture did not influence the transportation of the novel proppant.This proppant could easily enter the branch fracture and narrow fracture with a high packing area in rough surface fractures.Based on the aforementioned characteristics,this novel proppant technique could improve the proppant transportation efficiency in the low-viscosity fracturing fluid and increase the ability of the proppant to enter the secondary fracture.This study might provide a new solution for effectively exploiting low-permeability hydrocarbon reservoirs.展开更多
An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were ob...An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were obtained from history matching between forced imbibition experimental data and core-scale reservoir simulation results and taken into a large scale reservoir model to mimic the forced imbibition behavior during the well shut-in period after fracturing.The optimization of the stimulated reservoir volume(SRV)fracturing fluid volume strength should meet the requirements of estimated ultimate recovery(EUR),increased oil recovery by forced imbibition and enhancement of formation pressure and the fluid volume strength of fracturing fluid should be controlled around a critical value to avoid either insufficiency of imbibition displacement caused by insufficient fluid amount or increase of costs and potential formation damage caused by excessive fluid amount.Reservoir simulation results showed that SRV fracturing fluid volume strength positively correlated with single-well EUR and an optimal fluid volume strength existed,above which the single-well EUR increase rate kept decreasing.An optimized increase of SRV fracturing fluid volume and shut-in time would effectively increase the formation pressure and enhance well production.Field test results of well X-1 proved the practicality of established optimization method of SRV fracturing fluid volume strength on significant enhancement of shale oil well production.展开更多
Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do ...Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks.展开更多
Objective To investigate the vascular endothelial growth factor(VEGF)expression level by chondrocytes isolated from patients with osteoarthritis (OA) in hip or femoral neck fracture (FNF) and explore the effect of syn...Objective To investigate the vascular endothelial growth factor(VEGF)expression level by chondrocytes isolated from patients with osteoarthritis (OA) in hip or femoral neck fracture (FNF) and explore the effect of synovial fluid from OA展开更多
Deep and ultra-deep reservoirs have dense matrix and high fracture pressure, which leads to high pressure and difficulty in fracturing construction. Conventional aggravated fracturing fluids have the problems of low a...Deep and ultra-deep reservoirs have dense matrix and high fracture pressure, which leads to high pressure and difficulty in fracturing construction. Conventional aggravated fracturing fluids have the problems of low aggravation efficiency, high friction resistance, etc., and the reduction of construction pressure cannot reach the theoretical effect. In view of the above problems, this paper adopts the weighting agent HD160 and the drag reducing agent JHFR-2 to form a new type of weighted slippery water fracturing fluid system. And the weighting performance, drag reduction performance, corrosion performance, anti-expansion performance and reservoir damage of this system were studied. The results show that the density of the system is adjustable within 1.1 - 1.6 g·cm−3, and the drag reduction rate can be up to 68% at 1.5 g·cm−3, with low corrosion rate, surface tension less than 28 mN·m−1, anti-expansion rate as high as 94.5%, and the damage rate of the reservoir permeability is less than 10%, which is of good application prospect.展开更多
Spontaneous imbibition of water-based frac- turing fluids into the shale matrix is considered to be the main mechanism responsible for the high volume of water loss during the flowback period. Understanding the matrix...Spontaneous imbibition of water-based frac- turing fluids into the shale matrix is considered to be the main mechanism responsible for the high volume of water loss during the flowback period. Understanding the matrix imbibition capacity and rate helps to determine the frac- turing fluid volume, optimize the flowback design, and to analyze the influences on the production of shale gas. Imbibition experiments were conducted on shale samples from the Sichuan Basin, and some tight sandstone samples from the Ordos Basin. Tight volcanic samples from the Songliao Basin were also investigated for comparison. The effects of porosity, clay minerals, surfactants, and KC1 solutions on the matrix imbibition capacity and rate were systematically investigated. The results show that the imbibition characteristic of tight rocks can be characterized by the imbibition curve shape, the imbibition capacity, the imbibition rate, and the diffusion rate. The driving forces of water imbibition are the capillary pressure and the clay absorption force. For the tight rocks with low clay contents, the imbibition capacity and rate are positively correlated with the porosity. For tight rocks with high clay content, the type and content of clay minerals are the most impor- tant factors affecting the imbibition capacity. The imbibed water volume normalized by the porosity increases with an increasing total clay content. Smectite and illite/smectite tend to greatly enhance the water imbibition capacity. Furthermore, clay-rich tight rocks can imbibe a volume of water greater than their measured pore volume. The aver- age ratio of the imbibed water volume to the pore volume is approximately 1.1 in the Niutitang shale, 1.9 in the Lujiaping shale, 2.8 in the Longmaxi shale, and 4.0 in the Yingcheng volcanic rock, and this ratio can be regarded as a parameter that indicates the influence of clay. In addition, surfactants can change the imbibition capacity due to alteration of the capillary pressure and wettability. A 10 wt% KC1 solution can inhibit clay absorption to reduce the imbibition capacity.展开更多
Based on analysis of the reasons for low efficiency and low production after fracturing of some wells in the ultra-deep fractured tight reservoirs of the Kuqa piedmont zone, Tarim Basin and the matching relationship b...Based on analysis of the reasons for low efficiency and low production after fracturing of some wells in the ultra-deep fractured tight reservoirs of the Kuqa piedmont zone, Tarim Basin and the matching relationship between the in-situ stress field and natural fractures, technological methods for creating complex fracture networks are proposed. Through theoretical study and large-scale physical simulation experiments, the mechanical conditions for forming complex fracture network in the Kuqa piedmont ultra-deep reservoirs are determined. The effectiveness of temporary plugging and diversion, and multi-stage fracturing to activate natural fractures and consequently realize multi-stage diversion is verified. The coupling effect of hydraulic fractures and natural fractures activating each other and resulting in "fracture swarms" is observed. These insights provide theoretical support for improving fracture-controlled stimulated reservoir volume(FSRV) in ultra-deep tight reservoirs. In addition, following the concept of volume fracturing technology and based on the results of fracture conductivity experiments of different processes, fracturing technologies such as multi-stage fracture-network acid fracturing, "multi-stage temporary plugging + secondary fracturing", fracturing of multiple small layers by vertically softness-and-hardness-oriented subdivision, and weighted-fluid refracturing are proposed to increase the FSRV. New environment-friendly weighted-fluid with low cost and new fracturing fluid system with low viscosity and high proppant-carrying capacity are also developed. These techniques have achieved remarkable results in field application.展开更多
The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,...The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,a new technology,the so-called fracturing-oil expulsion integration,which does not need flowback after fracturing while making full use of the fracturing energy and gel breaking fluids,are needed to enable efficient exploitation of tight oil.A novel triple-responsive smart fluid based on“pseudo-Gemini”zwitterionic viscoelastic surfactant(VES)consisting of N-erucylamidopropyl-N,N-dimethyl-3-ammonio-2-hydroxy-1-propane-sulfonate(EHSB),N,N,N′,N′-tetramethyl-1,3-propanediamine(TMEDA)and sodium p-toluenesulfonate(NaPts),is developed.Then,the rheology of smart fluid is systematically studied at varying conditions(CO_(2),temperature and pressure).Moreover,the mechanism of triple-response is discussed in detail.Finally,a series of fracturing and spontaneous imbibition performances are systematically investigated.The smart fluid shows excellent CO_(2)-,thermal-,and pressure-triple responsive behavior.It can meet the technical requirement of tight oil fracturing construction at 140°C in the presence of 3.5 MPa CO_(2).The gel breaking fluid shows excellent spontaneous imbibition oil expulsion(∼40%),salt resistance(1.2×104 mg/L Na+),temperature resistance(140°C)and aging stability(30 days).展开更多
Slickwater-based fracturing fluid has recently garnered significant attention as the major fluid for volumetric fracturing;however,lots of challenges and limitations such as low viscosity,poor salt tolerance,and possi...Slickwater-based fracturing fluid has recently garnered significant attention as the major fluid for volumetric fracturing;however,lots of challenges and limitations such as low viscosity,poor salt tolerance,and possible formation damage hinder the application of the conventional simple slickwater-based fracturing fluid.In addition,nanomaterials have proven to be potential solutions or improvements to a number of challenges associated with the slickwater.In this paper,molybdenum disulfide(MoS_(2))nanosheets were chemically synthesized by hydrothermal method and applied to improve the performance of conventional slickwater-based fracturing fluid.Firstly,the microstructure characteristics and crystal type of the MoS_(2)nanosheets were analyzed by SEM,EDS,TEM,XPS,and Raman spectroscopy techniques.Then,a series of evaluation experiments were carried out to compare the performance of MoS_(2)nanosheet-modified slickwater with the conventional slickwater,including rheology,drag reduction,and sand suspension.Finally,the enhanced imbibition capacity and potential mechanism of the nanosheet-modified slickwater were systematically investigated.The results showed that the self-synthesized MoS_(2)nanosheets displayed a distinct ultrathin flake-like morphology and a lateral size in the range of tens of nanometers.In the nano-composites,each MoS_(2)nanosheet plays the role of cross-linking point,so as to make the spatial structure of the entire system more compact.Moreover,nanosheet-modified slickwater demonstrates more excellent properties in rheology,drag reduction,and sand suspension.The nanosheet-modified slickwater has a higher apparent viscosity after shearing 120 min under 90℃ and 170 s^(−1).The maximum drag reduction rate achieved 76.3%at 20℃,and the sand settling time of proppants with different mesh in the nano-composites was prolonged.Spontaneous imbibition experiments showed that the gel-breaking fluid of nanosheet-modified slickwater exhibited excellent capability of oil-detaching,and increase the oil recovery to∼35.43%.By observing and analyzing the interfacial behavior of MoS_(2)nanosheets under stimulated reservoir conditions,it was found that the presence of an interfacial tension gradient and the formation of a climbing film may play an essential role in the spontaneous imbibition mechanism.This work innovatively uses two-dimensional MoS_(2)nanosheets to modify regular slickwater and confirms the feasibility of flake-like nanomaterials to improve the performance of slickwater.The study also reveals the underlying mechanism of enhanced imbibition efficiency of the nano-composites.展开更多
Fracturing fluids(FFs)have been widely used to stimulate the tight reservoir.However,current FFs will not only lose their rheological property at high temperatures and high salt but also show an incomplete gel-breakin...Fracturing fluids(FFs)have been widely used to stimulate the tight reservoir.However,current FFs will not only lose their rheological property at high temperatures and high salt but also show an incomplete gel-breaking property.Herein,a double crosslinking network FF with pretty superiorities in rheology and low damage to the core was constructed by introducing both physical crosslinking and chemical crosslinking into the system.The construction of double crosslinking networks enhanced the rheology of this functional FF.The particle sizes of gel-breaking fluids are mainly distributed in 1.0e10,000 nm;furthermore,for every 10,000 mg/L increase in salinity,the particle size of the gel-breaking fluid is decreased by almost half.The adsorption capacity(<1.0 mg/g)gradually decreased with the increase of salinity at 20℃.Moreover,the adsorption of gel-breaking fluids on the rock decreased first and then kept stable with temperature increasing at a salinity of ≤30,000 mg/L,however,showed the opposite trend at 40,000 mg/L.The results of rheology,particle size,static adsorption,and core damage showed that this functional FF could be an alternative for the stimulation of a tight reservoir with high temperature and recycling of produced water with high salinity.展开更多
Hydraulic fracturing is an effective technology for coal reservoir stimulation.After fracturing operation and flowback,a fraction of fracturing fluid will be essentially remained in the formation which ultimately dama...Hydraulic fracturing is an effective technology for coal reservoir stimulation.After fracturing operation and flowback,a fraction of fracturing fluid will be essentially remained in the formation which ultimately damages the flowability of the formation.In this study,we quantified the gel-based fracturing fluid induced damages on gas sorption for Illinois coal in US.We conducted the high-pressure methane and CO_(2)sorption experiments to investigate the sorption damage due to the gel residue.The infrared spectroscopy tests were used to analyze the evolution of the functional group of the coal during fracturing fluid treatment.The results show that there is no significant chemical reaction between the fracturing fluid and coal,and the damage of sorption is attributed to the physical blockage and interactions.As the concentration of fracturing fluid increases,the density of residues on the coal surface increases and the adhesion film becomes progressively denser.The adhesion film on coal can apparently reduce the number of adsorption sites for gas and lead to a decrease of gas sorption capacity.In addition,the gel residue can decrease the interconnectivity of pore structure of coal which can also limit the sorption capacity by isolating the gas from the potential sorption sites.For the low concentration of fracturing fluid,the Langmuir volume was reduced to less than one-half of that of raw coal.After the fracturing fluid invades,the desorption hysteresis of methane and CO_(2)in coal was found to be amplified.The impact on the methane desorption hysteresis is significantly higher than CO_(2)does.The reason for the increasing of hysteresis may be that the adsorption swelling caused by the residue adhered on the pore edge,or the pore blockage caused by the residue invasion under high gas pressure.The results of this study quantitatively confirm the fracturing fluid induced gas sorption damage on coal and provide a baseline assessment for coal fracturing fluid formulation and technology.展开更多
Fracturing fluid is the blood of fracturing construction, which is very important for fracturing, which requires that fracturing fluid needs to have good performance. The three commonly used fracturing fluids for unco...Fracturing fluid is the blood of fracturing construction, which is very important for fracturing, which requires that fracturing fluid needs to have good performance. The three commonly used fracturing fluids for unconventional oil and gas reservoir transformation are: 1) Guar gum fracturing fluid;2) Water-based emulsion slippery water fracturing fluid;3) Oil-based emulsion slippery water fracturing fluid. In this paper, water samples and other experimental data provided by Mahu Oilfield are used to evaluate three different fracturing fluid systems in laboratory. The formulas of the three different fracturing fluid systems are: 1) Water-based emulsion slippery water fracturing fluid is clean slippery water fracturing fluid 0.1% JHFR-2D drag reducer + 0.2% JHFD-2 multifunctional additive;2) Oil-based emulsion slippery water fracturing fluid 0.1% A agent + 0.2% B agent;3) Guar gum fracturing fluid 0.1% guanidine gum + 0.5% drainage aid + 0.3% demulsifier. The compatibility, drag reduction performance, reservoir damage, residue content, anti-swelling performance, surface interfacial tension, viscosity and other properties of three different slippery water fracturing fluid systems were studied. Through laboratory experiments, the comprehensive indicators show that clean slippery water fracturing fluid has obvious advantages.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52022087).
文摘The field data of shale fracturing demonstrate that the flowback performance of fracturing fluid is different from that of conventional reservoirs,where the flowback rate of shale fracturing fluid is lower than that of conventional reservoirs.At the early stage of flowback,there is no single-phase flow of the liquid phase in shale,but rather a gas-water two-phase flow,such that the single-phase flow model for tight oil and gas reservoirs is not applicable.In this study,pores and microfractures are extracted based on the experimental results of computed tomography(CT)scanning,and a spatial model of microfractures is established.Then,the influence of rough microfracture surfaces on the flow is corrected using the modified cubic law,which was modified by introducing the average deviation of the microfracture height as a roughness factor to consider the influence of microfracture surface roughness.The flow in the fracture network is simulated using the modified cubic law and the lattice Boltzmann method(LBM).The results obtained demonstrate that most of the fracturing fluid is retained in the shale microfractures,which explains the low fracturing fluid flowback rate in shale hydraulic fracturing.
基金National Natural Science Foundation of China (51974176, 52174194, 51934004)Shandong Provincial Colleges and Universities Youth Innovation and Technology Support Program (2019KJH006)+1 种基金Taishan Scholars Project (TS20190935)Shandong outstanding youth fund (ZR2020JQ22).
文摘The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.
基金ChinaCommitteeofEducation theUniver sityofArizonaandtheMetropolitanWaterDistrictofSouthernCaliforni a.
文摘The continuum approach in fluid flow modeling is generally applied to porous geological media, but has limited applicability to fractured rocks. With the presence of a discrete fracture network relatively sparsely distributed in the matrix, it may be difficult or erroneous to use a porous medium fluid flow model with continuum assumptions to describe the fluid flow in fractured rocks at small or even large field scales. A discrete fracture fluid flow approach incorporating a stochastic fracture network with numerical fluid flow simulations could have the capability of capturing fluid flow behaviors such as inhomogeneity and anisotropy while reflecting the changes of hydraulic features at different scales. Moreover, this approach can be implemented to estimate the size of the representative elementary volume (REV) in order to find out the scales at which a porous medium flow model could be applied, and then to determine the hydraulic conductivity tensor for fractured rocks. The following topics are focused on in this study: (a) conceptual discrete fracture fluid flow modeling incorporating a stochastic fracture network with numerical flow simulations; (b) estimation of REV and hydraulic conductivity tensor for fractured rocks utilizing a stochastic fracture network with numerical fluid flow simulations; (c) investigation of the effect of fracture orientation and density on the hydraulic conductivity and REV by implementing a stochastic fracture network with numerical fluid flow simulations, and (d) fluid flow conceptual models accounting for major and minor fractures in the 2 D or 3 D flow fields incorporating a stochastic fracture network with numerical fluid flow simulations.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0708700).
文摘A deep understanding of the geometric impacts of fracture on fracturing fluid flowback efficiency is essential for unconventional oil development. Using nuclear magnetic resonance and 2.5-dimensional matrix-fracture visualization microfluidic models, qualitative and quantitative descriptions of the influences of connectivity between primary fracture and secondary fracture on flowback were given from core scale to pore network scale. The flow patterns of oil-gel breaking fluid two-phase flow during flowback under different fracture connectivity were analyzed. We found some counterintuitive results that non-connected secondary fracture (NCSF, not connect with artificial primary fracture and embedded in the matrix) is detrimental to flowbackefficiency. The NCSF accelerates the formation of oil channeling during flowback, resulting in a large amount of fracturing fluid trapped in the matrix, which is not beneficial for flowback. Whereas the connected secondary fracture (CSF, connected with the artificial primary fracture) is conducive to flowback. The walls of CSF become part of primary fracture, which expands the drainage area with low resistance, and delays the formation of the oil flow channel. Thus, CSF increases the high-speed flowback stage duration, thereby enhancing the flowback efficiency. The fracturing fluid flowback efficiency investigated here follows the sequence of the connected secondary fracture model (72%) > the matrix model (66%) > the non-connected secondary fracture model (38%). Our results contribute to hydraulic fracturing design and the prediction of flowback efficiency.
基金supported by the National Natural Science Foundation of China (No. 51874330, 51974341)the Fundamental Research Funds for the Central Universities (No. 20CX06070A)the Opening Fund of Shandong Key Laboratory of Oilfield Chemistry and the Fundamental Research Funds for the Central Universities(No. 19CX05006A)。
文摘Reservoir damage caused by guar gum fracturing fluid and slick water seriously affects the subsequent oil and gas production. However, the invasion characteristics and retention mechanisms of fracturing fluids in the fracture-matrix zone are still unclear. In this work, a microscopic model reflecting the characteristics of the fracture-matrix zone was designed. Based on the microfluidic experimental method, the process of fracturing fluid invasion, flowback and retention in the fracture-matrix zone was investigated visually and characterized quantitatively. The factors and mechanisms affecting fracturing fluid retention in the fracture-matrix zone were analyzed and clarified. The results indicated that in the invasion process, the frontal swept range of slick water was larger than that of the guar gum fracturing fluid, and the oil displacement efficiency and damage rate were lower than those of the guar gum fracturing fluid under the same invasion pressure. With the increase in invasion pressure, the damage rate of slick water increased from 61.09% to 82.77%, and that of the guar gum fracturing fluid decreased from 93.45% to83.36%. Before subsequent oil production, the invaded fracturing fluid was mainly concentrated in the medium-high permeability area of the fracture-matrix zone. The main resistance of slick water was capillary force, while that of the guar fracturing fluid was mainly viscous resistance. The fracturing fluid retention was most serious in the low permeability region and the region near the end of the fracture.The experimental and numerical simulation results showed that increasing the production pressure difference could improve the velocity field distribution of the fracture-matrix zone, increase the flowback swept range and finally reduce the retention rate of the fracture fluid. The retention mechanisms of slick water in the fracture-matrix zone include emulsion retention and flow field retention, while those of the guar gum fracturing fluid include viscous retention and flow field retention. Emulsion retention is caused by capillary force and flow interception effect. Viscous retention is caused by the viscous resistance of polymer, while flow-field retention is caused by uneven distribution of flowback velocity.
基金funded by the National key R&D Program of China(No.2023YFE0120700)the National Natural Science Foundation of China(No.51934005)+2 种基金the Shaanxi Province 2023 Innovation Capability Support Plan(No.2023KJXX-122)the Technology Innovation Leading Program of Shaanxi(No.2022 PT-08)the Project of Youth Innovation Team of Shaanxi Universities(No.22JP063).
文摘The Linxing area within the Ordos Basin exhibits pronounced reservoir heterogeneity and intricate micro-pore structures,rendering it susceptible to water-blocking damage during imbibition extraction.This study delved into the traits of tight sandstone reservoirs in the 8th member of the Shihezi Formation(also referred to as the He 8 Member)in the study area,as well as their effects on fracturing fluid imbibition.Utilizing experimental techniques such as nuclear magnetic resonance(NMR),high-pressure mercury intrusion(HPMI),and gas adsorption,this study elucidated the reservoir characteristics and examined the factors affecting the imbibition through imbibition experiments.The findings reveal that:①The reservoir,with average porosity of 8.40%and average permeability of 0.642×10^(-3)μm^(2),consists principally of quartz,feldspar,and lithic fragments,with feldspathic litharenite serving as the primary rock type and illite as the chief clay mineral;②Nano-scale micro-pores and throats dominate the reservoir,with dissolution pores and intercrystalline pores serving as predominant pore types,exhibiting relatively high pore connectivity;③Imbibition efficiency is influenced by petrophysical properties,clay mineral content,and microscopic pore structure.Due to the heterogeneity of the tight sandstone reservoir,microscopic factors have a more significant impact on the imbibition efficiency of fracturing fluids;④A comparative analysis shows that average pore size correlates most strongly with imbibition efficiency,followed by petrophysical properties and clay mineral content.In contrast,the pore type has minimal impact.Micropores are vital in the imbibition process,while meso-pores and macro-pores offer primary spaces for imbibition.This study offers theoretical insights and guidance for enhancing the post-fracturing production of tight sandstone reservoirs by examining the effects of these factors on the imbibition efficiency of fracturing fluids in tight sandstones.
基金financially supported by the National Natural Science Foundation of China(Nos.52120105007 and 52374062)the Innovation Fund Project for Graduate Students of China University of Petroleum(East China)supported by“the Fundamental Research Funds for the Central Universities”(23CX04047A)。
文摘A gel based on polyacrylamide,exhibiting delayed crosslinking characteristics,emerges as the preferred solution for mitigating degradation under conditions of high temperature and extended shear in ultralong wellbores.High viscosity/viscoelasticity of the fracturing fluid was required to maintain excellent proppant suspension properties before gelling.Taking into account both the cost and the potential damage to reservoirs,polymers with lower concentrations and molecular weights are generally preferred.In this work,the supramolecular action was integrated into the polymer,resulting in significant increases in the viscosity and viscoelasticity of the synthesized supramolecular polymer system.The double network gel,which is formed by the combination of the supramolecular polymer system and a small quantity of Zr-crosslinker,effectively resists temperature while minimizing permeability damage to the reservoir.The results indicate that the supramolecular polymer system with a molecular weight of(268—380)×10^(4)g/mol can achieve the same viscosity and viscoelasticity at 0.4 wt%due to the supramolecular interaction between polymers,compared to the 0.6 wt%traditional polymer(hydrolyzed polyacrylamide,molecular weight of 1078×10^(4)g/mol).The supramolecular polymer system possessed excellent proppant suspension properties with a 0.55 cm/min sedimentation rate at 0.4 wt%,whereas the0.6 wt%traditional polymer had a rate of 0.57 cm/min.In comparison to the traditional gel with a Zrcrosslinker concentration of 0.6 wt%and an elastic modulus of 7.77 Pa,the double network gel with a higher elastic modulus(9.00 Pa)could be formed only at 0.1 wt%Zr-crosslinker,which greatly reduced the amount of residue of the fluid after gel-breaking.The viscosity of the double network gel was66 m Pa s after 2 h shearing,whereas the traditional gel only reached 27 m Pa s.
基金Supported by the Key Fund Project of the National Natural Science Foundation of China and Joint Fund of Petrochemical Industry(Class A)(U1762212)National Natural Science Foundation of China(52274009)"14th Five-Year"Forward-looking and Fundamental Major Science and Technology Project of CNPC(2021DJ4402)。
文摘For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection.
基金supported by the Natural Science Foundation of Sichuan“Settlement and Transport Mechanism of Biomimetic Dandelion Proppant in Fracture” (No.23NSFSC5596)the China Postdoctoral Science Foundation (No.2023M742904)。
文摘Low-permeability reservoirs are generally characterized by low porosity and low permeability.Obtaining high production using the traditional method is technologically challenging because it yields a low reservoir recovery factor.In recent years,hydraulic fracturing technology is widely applied for efficiently exploiting and developing low-permeability reservoirs using a low-viscosity fluid as a fracturing fluid.However,the transportation of the proppant is inefficient in the low-viscosity fluid,and the proppant has a low piling-up height in fracture channels.These key challenges restrict the fluid(natural gas or oil)flow in fracture channels and their functional flow areas,reducing the profits of hydrocarbon exploitation.This study aimed to explore and develop a novel dandelion-bionic proppant by modifying the surface of the proppant and the fiber.Its structure was similar to that of dandelion seeds,and it had high transport and stacking efficiency in low-viscosity liquids compared with the traditional proppant.Moreover,the transportation efficiency of this newly developed proppant was investigated experimentally using six different types of fracture models(tortuous fracture model,rough fracture model,narrow fracture model,complex fracture model,large-scale single fracture model,and small-scale single fracture model).Experimental results indicated that,compared with the traditional proppant,the transportation efficiency and the packing area of the dandelion-based bionic proppant significantly improved in tap water or low-viscosity fluid.Compared with the traditional proppant,the dandelionbased bionic proppant had 0.1-4 times longer transportation length,0.3-5 times higher piling-up height,and 2-10 times larger placement area.The newly developed proppant also had some other extraordinary features.The tortuosity of the fracture did not influence the transportation of the novel proppant.This proppant could easily enter the branch fracture and narrow fracture with a high packing area in rough surface fractures.Based on the aforementioned characteristics,this novel proppant technique could improve the proppant transportation efficiency in the low-viscosity fracturing fluid and increase the ability of the proppant to enter the secondary fracture.This study might provide a new solution for effectively exploiting low-permeability hydrocarbon reservoirs.
文摘An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were obtained from history matching between forced imbibition experimental data and core-scale reservoir simulation results and taken into a large scale reservoir model to mimic the forced imbibition behavior during the well shut-in period after fracturing.The optimization of the stimulated reservoir volume(SRV)fracturing fluid volume strength should meet the requirements of estimated ultimate recovery(EUR),increased oil recovery by forced imbibition and enhancement of formation pressure and the fluid volume strength of fracturing fluid should be controlled around a critical value to avoid either insufficiency of imbibition displacement caused by insufficient fluid amount or increase of costs and potential formation damage caused by excessive fluid amount.Reservoir simulation results showed that SRV fracturing fluid volume strength positively correlated with single-well EUR and an optimal fluid volume strength existed,above which the single-well EUR increase rate kept decreasing.An optimized increase of SRV fracturing fluid volume and shut-in time would effectively increase the formation pressure and enhance well production.Field test results of well X-1 proved the practicality of established optimization method of SRV fracturing fluid volume strength on significant enhancement of shale oil well production.
文摘Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks.
文摘Objective To investigate the vascular endothelial growth factor(VEGF)expression level by chondrocytes isolated from patients with osteoarthritis (OA) in hip or femoral neck fracture (FNF) and explore the effect of synovial fluid from OA
文摘Deep and ultra-deep reservoirs have dense matrix and high fracture pressure, which leads to high pressure and difficulty in fracturing construction. Conventional aggravated fracturing fluids have the problems of low aggravation efficiency, high friction resistance, etc., and the reduction of construction pressure cannot reach the theoretical effect. In view of the above problems, this paper adopts the weighting agent HD160 and the drag reducing agent JHFR-2 to form a new type of weighted slippery water fracturing fluid system. And the weighting performance, drag reduction performance, corrosion performance, anti-expansion performance and reservoir damage of this system were studied. The results show that the density of the system is adjustable within 1.1 - 1.6 g·cm−3, and the drag reduction rate can be up to 68% at 1.5 g·cm−3, with low corrosion rate, surface tension less than 28 mN·m−1, anti-expansion rate as high as 94.5%, and the damage rate of the reservoir permeability is less than 10%, which is of good application prospect.
基金financially supported by the National Basic Research Program of China (973 Program) Granted No. 2015CB250903the National Natural Science Foundation of China Granted No. 51490652The Chongqing Institute of Geology and Mineral Resources supported this field work
文摘Spontaneous imbibition of water-based frac- turing fluids into the shale matrix is considered to be the main mechanism responsible for the high volume of water loss during the flowback period. Understanding the matrix imbibition capacity and rate helps to determine the frac- turing fluid volume, optimize the flowback design, and to analyze the influences on the production of shale gas. Imbibition experiments were conducted on shale samples from the Sichuan Basin, and some tight sandstone samples from the Ordos Basin. Tight volcanic samples from the Songliao Basin were also investigated for comparison. The effects of porosity, clay minerals, surfactants, and KC1 solutions on the matrix imbibition capacity and rate were systematically investigated. The results show that the imbibition characteristic of tight rocks can be characterized by the imbibition curve shape, the imbibition capacity, the imbibition rate, and the diffusion rate. The driving forces of water imbibition are the capillary pressure and the clay absorption force. For the tight rocks with low clay contents, the imbibition capacity and rate are positively correlated with the porosity. For tight rocks with high clay content, the type and content of clay minerals are the most impor- tant factors affecting the imbibition capacity. The imbibed water volume normalized by the porosity increases with an increasing total clay content. Smectite and illite/smectite tend to greatly enhance the water imbibition capacity. Furthermore, clay-rich tight rocks can imbibe a volume of water greater than their measured pore volume. The aver- age ratio of the imbibed water volume to the pore volume is approximately 1.1 in the Niutitang shale, 1.9 in the Lujiaping shale, 2.8 in the Longmaxi shale, and 4.0 in the Yingcheng volcanic rock, and this ratio can be regarded as a parameter that indicates the influence of clay. In addition, surfactants can change the imbibition capacity due to alteration of the capillary pressure and wettability. A 10 wt% KC1 solution can inhibit clay absorption to reduce the imbibition capacity.
基金National Science and Technology Major Project(2016ZX05023)PetroChina Science and Technology Major Project(2018E-1809)。
文摘Based on analysis of the reasons for low efficiency and low production after fracturing of some wells in the ultra-deep fractured tight reservoirs of the Kuqa piedmont zone, Tarim Basin and the matching relationship between the in-situ stress field and natural fractures, technological methods for creating complex fracture networks are proposed. Through theoretical study and large-scale physical simulation experiments, the mechanical conditions for forming complex fracture network in the Kuqa piedmont ultra-deep reservoirs are determined. The effectiveness of temporary plugging and diversion, and multi-stage fracturing to activate natural fractures and consequently realize multi-stage diversion is verified. The coupling effect of hydraulic fractures and natural fractures activating each other and resulting in "fracture swarms" is observed. These insights provide theoretical support for improving fracture-controlled stimulated reservoir volume(FSRV) in ultra-deep tight reservoirs. In addition, following the concept of volume fracturing technology and based on the results of fracture conductivity experiments of different processes, fracturing technologies such as multi-stage fracture-network acid fracturing, "multi-stage temporary plugging + secondary fracturing", fracturing of multiple small layers by vertically softness-and-hardness-oriented subdivision, and weighted-fluid refracturing are proposed to increase the FSRV. New environment-friendly weighted-fluid with low cost and new fracturing fluid system with low viscosity and high proppant-carrying capacity are also developed. These techniques have achieved remarkable results in field application.
基金sincerely appreciate the financial support from the National Key Research and Development Project(2019YFA0708700)the National Natural Science Foundation of China(51834010,51874261,51874337)+1 种基金the Key Research and Development Program of Shaanxi(2021GY-112)a Discovery Grant from Natural Sciences and Engineering Research Council of Canada(NSERC RGPIN-2017-05080).
文摘The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,a new technology,the so-called fracturing-oil expulsion integration,which does not need flowback after fracturing while making full use of the fracturing energy and gel breaking fluids,are needed to enable efficient exploitation of tight oil.A novel triple-responsive smart fluid based on“pseudo-Gemini”zwitterionic viscoelastic surfactant(VES)consisting of N-erucylamidopropyl-N,N-dimethyl-3-ammonio-2-hydroxy-1-propane-sulfonate(EHSB),N,N,N′,N′-tetramethyl-1,3-propanediamine(TMEDA)and sodium p-toluenesulfonate(NaPts),is developed.Then,the rheology of smart fluid is systematically studied at varying conditions(CO_(2),temperature and pressure).Moreover,the mechanism of triple-response is discussed in detail.Finally,a series of fracturing and spontaneous imbibition performances are systematically investigated.The smart fluid shows excellent CO_(2)-,thermal-,and pressure-triple responsive behavior.It can meet the technical requirement of tight oil fracturing construction at 140°C in the presence of 3.5 MPa CO_(2).The gel breaking fluid shows excellent spontaneous imbibition oil expulsion(∼40%),salt resistance(1.2×104 mg/L Na+),temperature resistance(140°C)and aging stability(30 days).
基金This research was financially supported by the National Natural Science Foundation of China(Grant Nos.52004306 and 52174045)the Strategic Cooperation Technology Projects of CNPC and CUPB(Grant Nos.ZLZX2020-01 and ZLZX2020-02)the National Sciencea and Technology Major Projects of China(Grant Nos.2016ZX05030005and 2016ZX05051003).
文摘Slickwater-based fracturing fluid has recently garnered significant attention as the major fluid for volumetric fracturing;however,lots of challenges and limitations such as low viscosity,poor salt tolerance,and possible formation damage hinder the application of the conventional simple slickwater-based fracturing fluid.In addition,nanomaterials have proven to be potential solutions or improvements to a number of challenges associated with the slickwater.In this paper,molybdenum disulfide(MoS_(2))nanosheets were chemically synthesized by hydrothermal method and applied to improve the performance of conventional slickwater-based fracturing fluid.Firstly,the microstructure characteristics and crystal type of the MoS_(2)nanosheets were analyzed by SEM,EDS,TEM,XPS,and Raman spectroscopy techniques.Then,a series of evaluation experiments were carried out to compare the performance of MoS_(2)nanosheet-modified slickwater with the conventional slickwater,including rheology,drag reduction,and sand suspension.Finally,the enhanced imbibition capacity and potential mechanism of the nanosheet-modified slickwater were systematically investigated.The results showed that the self-synthesized MoS_(2)nanosheets displayed a distinct ultrathin flake-like morphology and a lateral size in the range of tens of nanometers.In the nano-composites,each MoS_(2)nanosheet plays the role of cross-linking point,so as to make the spatial structure of the entire system more compact.Moreover,nanosheet-modified slickwater demonstrates more excellent properties in rheology,drag reduction,and sand suspension.The nanosheet-modified slickwater has a higher apparent viscosity after shearing 120 min under 90℃ and 170 s^(−1).The maximum drag reduction rate achieved 76.3%at 20℃,and the sand settling time of proppants with different mesh in the nano-composites was prolonged.Spontaneous imbibition experiments showed that the gel-breaking fluid of nanosheet-modified slickwater exhibited excellent capability of oil-detaching,and increase the oil recovery to∼35.43%.By observing and analyzing the interfacial behavior of MoS_(2)nanosheets under stimulated reservoir conditions,it was found that the presence of an interfacial tension gradient and the formation of a climbing film may play an essential role in the spontaneous imbibition mechanism.This work innovatively uses two-dimensional MoS_(2)nanosheets to modify regular slickwater and confirms the feasibility of flake-like nanomaterials to improve the performance of slickwater.The study also reveals the underlying mechanism of enhanced imbibition efficiency of the nano-composites.
基金supported by the National Natural Science Foundation of China(Grant No.52274043,Grant No.52104035,Grant No.41902303)China Postdoctoral Science Foundation(2022M712646)+3 种基金Sichuan Innovation Team Project(2022JDTD0010)Natural Science Foundation of Sichuan Province(2023NSFSC0923)Sichuan Province Regional Innovation Cooperation Project(2020YFQ0031)Open Fund(PLN 2021-04 and PLN 2020-13)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University).
文摘Fracturing fluids(FFs)have been widely used to stimulate the tight reservoir.However,current FFs will not only lose their rheological property at high temperatures and high salt but also show an incomplete gel-breaking property.Herein,a double crosslinking network FF with pretty superiorities in rheology and low damage to the core was constructed by introducing both physical crosslinking and chemical crosslinking into the system.The construction of double crosslinking networks enhanced the rheology of this functional FF.The particle sizes of gel-breaking fluids are mainly distributed in 1.0e10,000 nm;furthermore,for every 10,000 mg/L increase in salinity,the particle size of the gel-breaking fluid is decreased by almost half.The adsorption capacity(<1.0 mg/g)gradually decreased with the increase of salinity at 20℃.Moreover,the adsorption of gel-breaking fluids on the rock decreased first and then kept stable with temperature increasing at a salinity of ≤30,000 mg/L,however,showed the opposite trend at 40,000 mg/L.The results of rheology,particle size,static adsorption,and core damage showed that this functional FF could be an alternative for the stimulation of a tight reservoir with high temperature and recycling of produced water with high salinity.
基金This study was sponsored by the open fund by Key Laboratory of Mining Disaster Prevention and Control(MDPC201911)the Independent Research Fund of Key Laboratory of Industrial Dust Prevention and Control&Occupational Health and Safety,Ministry of Education Anhui University of Science and Technology(EK20201001).
文摘Hydraulic fracturing is an effective technology for coal reservoir stimulation.After fracturing operation and flowback,a fraction of fracturing fluid will be essentially remained in the formation which ultimately damages the flowability of the formation.In this study,we quantified the gel-based fracturing fluid induced damages on gas sorption for Illinois coal in US.We conducted the high-pressure methane and CO_(2)sorption experiments to investigate the sorption damage due to the gel residue.The infrared spectroscopy tests were used to analyze the evolution of the functional group of the coal during fracturing fluid treatment.The results show that there is no significant chemical reaction between the fracturing fluid and coal,and the damage of sorption is attributed to the physical blockage and interactions.As the concentration of fracturing fluid increases,the density of residues on the coal surface increases and the adhesion film becomes progressively denser.The adhesion film on coal can apparently reduce the number of adsorption sites for gas and lead to a decrease of gas sorption capacity.In addition,the gel residue can decrease the interconnectivity of pore structure of coal which can also limit the sorption capacity by isolating the gas from the potential sorption sites.For the low concentration of fracturing fluid,the Langmuir volume was reduced to less than one-half of that of raw coal.After the fracturing fluid invades,the desorption hysteresis of methane and CO_(2)in coal was found to be amplified.The impact on the methane desorption hysteresis is significantly higher than CO_(2)does.The reason for the increasing of hysteresis may be that the adsorption swelling caused by the residue adhered on the pore edge,or the pore blockage caused by the residue invasion under high gas pressure.The results of this study quantitatively confirm the fracturing fluid induced gas sorption damage on coal and provide a baseline assessment for coal fracturing fluid formulation and technology.
文摘Fracturing fluid is the blood of fracturing construction, which is very important for fracturing, which requires that fracturing fluid needs to have good performance. The three commonly used fracturing fluids for unconventional oil and gas reservoir transformation are: 1) Guar gum fracturing fluid;2) Water-based emulsion slippery water fracturing fluid;3) Oil-based emulsion slippery water fracturing fluid. In this paper, water samples and other experimental data provided by Mahu Oilfield are used to evaluate three different fracturing fluid systems in laboratory. The formulas of the three different fracturing fluid systems are: 1) Water-based emulsion slippery water fracturing fluid is clean slippery water fracturing fluid 0.1% JHFR-2D drag reducer + 0.2% JHFD-2 multifunctional additive;2) Oil-based emulsion slippery water fracturing fluid 0.1% A agent + 0.2% B agent;3) Guar gum fracturing fluid 0.1% guanidine gum + 0.5% drainage aid + 0.3% demulsifier. The compatibility, drag reduction performance, reservoir damage, residue content, anti-swelling performance, surface interfacial tension, viscosity and other properties of three different slippery water fracturing fluid systems were studied. Through laboratory experiments, the comprehensive indicators show that clean slippery water fracturing fluid has obvious advantages.