BACKGROUND Complicated crown–root fracture (CRF) involves severe injury to the crown, root,and pulp, and may be accompanied by multiple root fractures. The loss of a toothhas lifelong consequences for children and te...BACKGROUND Complicated crown–root fracture (CRF) involves severe injury to the crown, root,and pulp, and may be accompanied by multiple root fractures. The loss of a toothhas lifelong consequences for children and teenagers, but the maintenance of pulphealth and the calcific healing of multiple root fractures are rarely reported in theliterature.CASE SUMMARY This case reports healing of a permanent tooth with complicated crown–root andadditional root fractures, in which pulp health was maintained. A 10-year-old girlfell and fractured the root of her maxillary left central incisor at the cervical level.After the coronal fragment was repositioned, the tooth was splinted until thetooth was no longer mobile, 2 years later. Eight years after treatment, the toothhas remained asymptomatic with vital pulp and localized gingival overgrowth.Cone-beam computed tomography revealed not only calcified healing of the CRFbut also spontaneous healing in an additional undiagnosed root fracture. Thefracture line on the enamel could not be healed by hard tissue and formed agroove in the cervical crown. It was speculated that the groove was related to thelocalized gingival overgrowth.CONCLUSION This case provides a clinical perspective of the treatment of a tooth with acomplicated CRF and an additional root fracture.展开更多
BACKGROUND Fracture nonunion represents a challenging complication during fracture repair,often necessitating surgical intervention.Teriparatide,a recombinant human parathyroid hormone,has demonstrated promise in enha...BACKGROUND Fracture nonunion represents a challenging complication during fracture repair,often necessitating surgical intervention.Teriparatide,a recombinant human parathyroid hormone,has demonstrated promise in enhancing fracture healing,although its efficacy in treating established nonunion remains under investigation.CASE SUMMARY We report a case of a 27-year-old male who presented with a right humerus fracture following a traffic accident.Despite undergoing open reduction and internal fixation,the fracture resulted in a delayed union and subsequent nonunion.After 4 years of conservative management,teriparatide treatment was initiated due to persistent nonunion.Teriparatide injections were administered daily for 6 months,resulting in complete fracture healing and resolution of pain.CONCLUSION Our case demonstrates the successful use of teriparatide in treating a prolonged nonunion of a humerus fracture.Teriparatide may provide a valuable therapeutic option for established bone nonunion,even in cases that have not responded to conservative treatments.展开更多
This paper describes numerical simulation of hydraulic fracturing using fracture-based continuum modeling(FBCM)of coupled geomechanical-hydrological processes to evaluate a technique for high-density fracturing and fr...This paper describes numerical simulation of hydraulic fracturing using fracture-based continuum modeling(FBCM)of coupled geomechanical-hydrological processes to evaluate a technique for high-density fracturing and fracture caging.The simulations are innovative because of modeling discrete fractures explicitly in continuum analysis.A key advantage of FBCM is that fracture initiation and propagation are modeled explicitly without changing the domain grid(i.e.no re-meshing).Further,multiple realizations of a preexisting fracture distribution can be analyzed using the same domain grid.The simulated hydraulic fracturing technique consists of pressurizing multiple wells simultaneously:initially without permeating fluids into the rock,to seed fractures uniformly and at high density in the wall rock of the wells;followed by fluid injection to propagate the seeded fracture density hydraulically.FBCM combines the ease of continuum modeling with the potential accuracy of modeling discrete fractures and fracturing explicitly.Fractures are modeled as piecewise planar based on intersections with domain elements;fracture geometry stored as continuum properties is used to calculate parameters needed to model individual fractures;and rock behavior is modeled through tensorial aggregation of the behavior of discrete fractures and unfractured rock.Simulations are presented for previously unfractured rock and for rock with preexisting fractures of horizontal,shallow-dipping,steeply dipping,or vertical orientation.Simulations of a single-well model are used to determine the pattern and spacing for a multiple-well design.The results illustrate high-density fracturing and fracture caging through simultaneous fluid injection in multiple wells:for previously unfractured rock or rock with preexisting shallow-dipping or horizontal fractures,and in situ vertical compressive stress greater than horizontal.If preexisting fractures are steeply dipping or vertical,and considering the same in situ stress condition,well pressurization without fluid permeation appears to be the only practical way to induce new fractures and contain fracturing within the target domain.展开更多
BACKGROUND Traumatic injuries,such as falling,car accidents,and crushing mostly cause spinal fractures in young and middle-aged people,and>50%of them are thoracolumbar fractures.This kind of fracture is easily comb...BACKGROUND Traumatic injuries,such as falling,car accidents,and crushing mostly cause spinal fractures in young and middle-aged people,and>50%of them are thoracolumbar fractures.This kind of fracture is easily combined with serious injuries to peripheral nerves and soft tissues,which causes paralysis of the lower limbs if there is no timely rehabilitation treatment.Young patients with thoracolumbar fractures find it difficult to recover after the operation,and they are prone to depression,low self-esteem,and other negative emotions.AIM To investigate the association between anxiety,depression,and social stress in young patients with thoracolumbar spine fractures and the effect on rehabilitation outcomes.METHODS This study retrospectively analyzed 100 patients admitted to the orthopedic department of Honghui Hospital,Xi’an Jiaotong University who underwent thoracolumbar spine fracture surgery from January 2022 to June 2023.The general data of the patients were assessed with the Hamilton anxiety scale(HAMA),Hamilton depression scale(HAMD),life events scale,and social support rating scale(SSRS)to identify the correlation between anxiety,depression scores,and social stress and social support.The Japanese Orthopedic Association(JOA)was utilized to evaluate the rehabilitation outcomes of the patients and to analyze the effects of anxiety and depression scores on rehabilitation.RESULTS According to the scores of HAMD and HAMA in all patients,the prevalence of depression in patients was 39%(39/100),and the prevalence of anxiety was 49%(49/100).Patients were categorized into non-depression(n=61)and depression(n=39),non-anxiety(n=51),and anxiety(n=49)groups.Statistically significant differences in gender,occupation,Pittsburgh Sleep Quality Index(PSQI)score,and monthly family income were observed between the non-depression and depression groups(P<0.05).A significant difference in occupation and PSQI score was found between the non-anxiety and anxiety groups.Both depression(r=0.207,P=0.038)and anxiety scores(r=0.473,P<0.001)were significantly and positively correlated with negative life events.The difference in negative life event scores as well as SSRS total and item scores was statist-ically significant between patients in the non-depression and depression groups(P<0.05).The difference between the non-anxiety and anxiety groups was statistically significant(P<0.05)in the negative life event scores as well as the total SSRS scores.Additionally,JOA scores were significantly lower in both anxious and depressed patients.CONCLUSION Young patients with thoracolumbar fractures are prone to anxiety and depression.Patients’anxiety and depression are closely associated with social pressure,which reduces the life pressure of young patients with thoracolumbar fractures,enhances social support,and improves the psychology of anxiety and depression.,which affects patients’recovery.展开更多
BACKGROUND Extended care based on self-efficacy theory to elderly patients with intertrochanteric fractures will provide data reference to optimize the care plan of these patients,reduce patients’concurrent mental di...BACKGROUND Extended care based on self-efficacy theory to elderly patients with intertrochanteric fractures will provide data reference to optimize the care plan of these patients,reduce patients’concurrent mental diseases,and improve prognosis.AIM To analyze the value of extended nursing based on the self-efficacy theory in older patients with intertrochanteric fractures.METHODS Older patients with intertrochanteric fractures(n=88)admitted to our hospital between January 2021 and December 2024 were randomly divided into two groups-the control group(n=44,routine nursing)and the observation group(n=44,extended nursing)-via balloting and treated for 12 weeks.The mental state,pain severity,limb function,and self-nursing ability of all patients before and after nursing were analyzed.RESULTS After nursing,the Hamilton Anxiety Scale and General Self-Efficacy Scale scores of patients in the two groups improved.Notably,Hamilton Anxiety Scale and General Self-Efficacy Scale scores in the observation group were lower and higher,respectively,than those in the control group(P<0.05).The pain severity in the observation group(2.64±0.22)was lower than that in the control group(2.85±0.41)(P<0.05).The recovery rate of limb function was higher in the observation group than in the control group(P<0.05).In addition,the self-nursing ability scores of the patients in both groups increased,with a significantly higher score in the observation group(P<0.05).CONCLUSION Extended nursing based on the self-efficacy theory can significantly improve mental state,relieve pain,and promote the recovery of limb function and self-nursing ability in older patients with intertrochanteric fractures.展开更多
This study proposed a repeated adjustable mixture injection strategy(RAM)based microbial induced carbonate precipitation(MICP)for efficient mitigation of rock fracture leakage.Granite fractures with small apertures we...This study proposed a repeated adjustable mixture injection strategy(RAM)based microbial induced carbonate precipitation(MICP)for efficient mitigation of rock fracture leakage.Granite fractures with small apertures were investigated,and bio-sealing experiments were conducted using five different cementation solution(CS)concentrations(0.25−2 M).The results showed that the RAM-based bio-sealing method can seal and bond the small aperture rock fractures with high efficiency and uniform precipitation by adjusting the CS concentration.The RAM-based bio-sealing mechanism is attributed to the following four stages:(1)fixation of bacterial flocs onto the fracture surfaces,(2)precipitation of CaCO3 onto the fracture surfaces,(3)growth of pre-precipitated CaCO3 and adhesion of new-suspended CaCO3,and(4)bridging and clogging processes.The optimal CS concentration of 1 M resulted in a fracture filling rate up to 85%,a transmissivity reduction of 4 orders of magnitude,and a shear strength ranging from 512 kPa to 688 kPa.The bio-sealing effect was found to be influenced by the CS concentration on bacterial attachment,calcium carbonate yield and calcium carbonate bulk density.The CS concentration of 1 M promoted bacterial attachment,and increased calcium carbonate yield as well as calcium carbonate bulk density,while concentrations above 1 M had the opposite effect.The bulk density of calcium carbonate played a crucial role in the sealing and bonding performance of bio-sealed fractures,particularly at comparable filling ratios and bridging areas.The bulk density was regulated by the size of calcium carbonate crystals and was determined by Ca2+concentration in the CS.This study provides valuable insights into the RAM-based bio-sealing method,highlighting its potential for efficient rock fracture leakage mitigation through precise control of CS concentration and understanding the underlying mechanisms.展开更多
Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of l...Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research.展开更多
Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numer...Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numerical tools for assessing the grouting effectiveness in water-rich fractured strata.In this study,the hydro-mechanical coupled discontinuous deformation analysis(HM-DDA)is inaugurally extended to simulate the grouting process in a water-rich discrete fracture network(DFN),including the slurry migration,fracture dilation,water plugging in a seepage field,and joint reinforcement after coagulation.To validate the capabilities of the developed method,several numerical examples are conducted incorporating the Newtonian fluid and Bingham slurry.The simulation results closely align with the analytical solutions.Additionally,a set of compression tests is conducted on the fresh and grouted rock specimens to verify the reinforcement method and calibrate the rational properties of reinforced joints.An engineering-scale model based on a real water inrush case of the Yonglian tunnel in a water-rich fractured zone has been established.The model demonstrates the effectiveness of grouting reinforcement in mitigating water inrush disaster.The results indicate that increased grouting pressure greatly affects the regulation of water outflow from the tunnel face and the prevention of rock detachment face after excavation.展开更多
To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing m...To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing mudstone.This analysis aimed to understand the mechanism behind the significant deformations.Drawing from the principle of excavation stress compensation,a support scheme featuring NPR anchorcables and an asymmetric truss support system was devised.To validate the scheme,numerical analysis using a combination of the Discrete Element Method(DEM)-Finite Element Method(FEM)was conducted.Additionally,similar material model tests and engineering measurements were carried out.Field experiments were also performed to evaluate the NPR anchor-cable and truss support system,focusing on anchor cable forces,pressures between the truss and surrounding rock,pressures between the initial support and secondary lining,as well as the magnitude of settlement and convergence deformation in the surrounding rock.The results indicate that the waterinduced expansion of clay minerals,resulting from damage caused by fissure water,accelerated the softening of the mudstone's internal structure,leading to significant deformations in the Tabaiyi Tunnel under high tectonic stress.The original support design fell short as the length of the anchor rods was smaller than the expansion depth of the plastic zone.As a result,the initial support structure bore the entire load from the surrounding rock,and a non-coupled deformation contact was observed between the double-arch truss and the surrounding rock.The adoption of NPR asymmetric anchor-cable support effectively restrained the expansion and asymmetric distribution characteristics of the plastic zone.Considering the mechanical degradation caused by water absorption in mudstone,the rigid constraint provided by the truss proved crucial for controlling the stability of the surrounding rock.These research findings hold significant implications for managing large deformations in soft rock tunnels situated within fractured zones under high tectonic stress conditions.展开更多
Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature ...Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature treatment were conducted with a ϕ75 mm split Hopkinson tension bar (SHTB) to investigate the mesoscopic fracture and damage properties of rock. An improved scanning electron microscopy (SEM) experimental method was used to analyze the tensile fracture surfaces of rock samples. Qualitative and quantitative analyses were performed to assess evolution of mesoscopic damage of heat-damaged rock under tensile loading. A constitutive model describing the mesoscopic fractal damage under thermo-mechanical coupling was established. The results showed that the high temperatures significantly reduced the tensile strength and fracture surface roughness of the red sandstone. The three-dimensional (3D) reconstruction of the fracture surface of the samples that experienced tensile failure at 900 °C showed a flat surface. The standard deviation of elevation and slope angle of specimen fracture surface first increased and then decreased with increasing temperature. The threshold for brittle fracture of the heat-damaged red sandstone specimens was 600 °C. Beyond this threshold temperature, local ductile fracture occurred, resulting in plastic deformation of the fracture surface during tensile fracturing. With increase of temperature, the internal meso-structure of samples was strengthened slightly at first and then deteriorated gradually, which was consistent with the change of macroscopic mechanical properties of red sandstone. The mesoscopic characteristics, such as the number, mean side length, maximum area, porosity, and fractal dimension of crack, exhibited an initial decline, followed by a gradual increase. The development of microcracks in samples had significant influence on mesoscopic fractal dimension. The mesoscopic fractal characteristics were used to establish a mesoscopic fractal damage constitutive model for red sandstone, and the agreement between the theoretical and experimental results validated the proposed model.展开更多
Fracture of the lateral process of the talus(FLPT)is uncommon in clinical practice and can be easily missed or misdiagnosed.In recent years,as researchers from all over the world have further deepened their research o...Fracture of the lateral process of the talus(FLPT)is uncommon in clinical practice and can be easily missed or misdiagnosed.In recent years,as researchers from all over the world have further deepened their research on FLPT,there has been a breakthrough in the classification,and the methods and principles of clinical management have changed accordingly;however,there is still no standardized guideline for the diagnosis and management of FLPT,and there have been few relevant literature review articles related to this kind of fracture in the past at least 5 years.In this article,we review the clinical classification,classification-based therapeutic recommendations,and prognosis of FLPT,with the aim of providing a reference for the clinical diagnosis and management of this infrequent fracture.展开更多
The fracture toughness of rocks is a critical fracturing parameter in geo-energy exploitation playing a significant role in fracture mechanics and hydraulic fracturing.The edge-notched disk bending(ENDB)specimens are ...The fracture toughness of rocks is a critical fracturing parameter in geo-energy exploitation playing a significant role in fracture mechanics and hydraulic fracturing.The edge-notched disk bending(ENDB)specimens are employed to measure the entire range of mixed-modeⅠ/Ⅲfracture toughness of Longmaxi shale.To theoretically interpret the fracture mechanisms,this research first introduces the detailed derivations of three established fracture criteria.By distinguishing the volumetric and distortional strain energy densities,an improved three-dimensional mean strain energy density(MSED)criterion is proposed.As the critical volumetric to distortional MSED ratio decreases,the transition from tensiondominated fracture to shear-dominated fracture is observed.Our results indicate that both peak load and applied energy increase significantly with the transition from pure mode I(i.e.,tension)to pure modeⅢ(i.e.,torsion or tearing)since mode-Ⅲcracking happens in a twisted manner and mode-Ⅰcracking occurs in a coplanar manner.The macroscopic fracture signatures are consistent with those of triaxial hydraulic fracturing.The average ratio of pure mode-Ⅲfracture toughness to pure mode-Ⅰfracture toughness is 0.68,indicating that the obtained mode-Ⅲfracture resistance for a tensionbased loading system is apparent rather than true.Compared to the three mainstream fracture criteria,the present fracture criterion exhibits greater competitiveness and can successfully evaluate and predict mixed-modeⅠ/Ⅲfracture toughness of distinct materials and loading methods.展开更多
The gas production of deep coalbed methane wells in Linxing-Shenfu block decreases rapidly,the water output is high,the supporting effect is poor,the effective supporting fracture size is limited,and the migration mec...The gas production of deep coalbed methane wells in Linxing-Shenfu block decreases rapidly,the water output is high,the supporting effect is poor,the effective supporting fracture size is limited,and the migration mechanism of proppant in deep coal reservoir is not clear at present.To investigate the migration behavior of proppants in complex fractures during the volume reconstruction of deep coal and rock reservoirs,an optimization test on the conductivity of low-density proppants and simulations of proppant migration in complex fractures of deep coal reservoirs were conducted.The study systematically analyzed the impact of various fracture geometries,proppant types and fracturingfluid viscosities on proppant distribution.Furthermore,the study compared the outcomes of dynamic proppant transport experiments with simulation results.The results show that the numerical simulation is consistent with the results of the proppant dynamic sand-carrying experiment.Under the conditions of low viscosity and large pumping-rate,a high ratio of 40/70 mesh proppant can facilitate the movement of the proppant to the depths of fractures at all levels.The technical goal is to create comprehensive fracture support within intricate trapezoidal fractures in deep coal and rock reservoirs without inducing sand plugging.The sand ratio is controlled at 15%–20%,with a proppant combination ratio of 40/70:30/50:20/40=6:3:1.Proppant pumping operations can effectively address the issue of poor support in complex fractures in deep coal formations.The research results have been successfully applied to the development of deep coalbed methane in the Linxing-Shenfu block,Ordos Basin.展开更多
Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P...Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P w)and pore pressure(P p)during drilling,which may cause wellbore instability.However,the weakening of fracture strength due to mud intrusion is not considered in most existing borehole stability analyses,which may yield significant errors and misleading predictions.In addition,only limited factors were analyzed,and the fracture distribution was oversimplified.In this paper,the impacts of mud intrusion and associated fracture strength weakening on borehole stability in fractured rocks under both isotropic and anisotropic stress states are investigated using a coupled DEM(distinct element method)and DFN(discrete fracture network)method.It provides estimates of the effect of fracture strength weakening,wellbore pressure,in situ stresses,and sealing efficiency on borehole stability.The results show that mud intrusion and weakening of fracture strength can damage the borehole.This is demonstrated by the large displacement around the borehole,shear displacement on natural fractures,and the generation of fracture at shear limit.Mud intrusion reduces the shear strength of the fracture surface and leads to shear failure,which explains that the increase in mud weight may worsen borehole stability during overbalanced drilling in fractured formations.A higher in situ stress anisotropy exerts a significant influence on the mechanism of shear failure distribution around the wellbore.Moreover,the effect of sealing natural fractures on maintaining borehole stability is verified in this study,and the increase in sealing efficiency reduces the radial invasion distance of drilling mud.This study provides a directly quantitative prediction method of borehole instability in naturally fractured formations,which can consider the discrete fracture network,mud intrusion,and associated weakening of fracture strength.The information provided by the numerical approach(e.g.displacement around the borehole,shear displacement on fracture,and fracture at shear limit)is helpful for managing wellbore stability and designing wellbore-strengthening operations.展开更多
Acetabular fractures in the geriatric population are typically low-energy fractures resulting from a fall from standing height.Compromised bone quality in the elderly,as well as this population’s concomitant medical ...Acetabular fractures in the geriatric population are typically low-energy fractures resulting from a fall from standing height.Compromised bone quality in the elderly,as well as this population’s concomitant medical comorbidities,render the management of such fractures challenging and controversial.Non-operative management remains the mainstay of treatment,although such a choice is associated with numerous and serious complications related to both the hip joint as well as the general condition of the patient.On the other hand,operatively treating acetabular fractures(e.g.,with osteosynthesis or total hip arthroplasty)is gaining popularity.Osteosynthesis can be performed with open reduction and internal fixation or with minimally invasive techniques.Total hip arthroplasty could be performed either in the acute phase combined with osteosynthesis or as a delayed procedure after a period of non-operative management or after failed osteosynthesis of the acetabulum.Regardless of the implemented treatment,orthogeriatric co-management is considered extremely crucial,and it is currently one of the pillars of a successful outcome after an acetabular fracture.展开更多
Fractures of the lateral process of the talus(FLPT)are uncommon fractures that represent a clinical challenge.Traditional radiological classification systems rely predominantly on radiographic findings.However,due to ...Fractures of the lateral process of the talus(FLPT)are uncommon fractures that represent a clinical challenge.Traditional radiological classification systems rely predominantly on radiographic findings.However,due to the high rate of FLPT misdiagnosis and the limited accuracy in evaluating concomitant talar injuries through plain radiographs,novel imaging classification systems have been developed that aim to enhance the diagnosis of concomitant talar injuries,thereby optimizing patient management and reducing the incidence of long-term complications.展开更多
BACKGROUND Distal humerus elbow fractures are one of the most common traumatic fractures seen in pediatric patients and present as three main types:Supracondylar(SC),lateral condyle(LC),and medial epicondyle(ME)fractu...BACKGROUND Distal humerus elbow fractures are one of the most common traumatic fractures seen in pediatric patients and present as three main types:Supracondylar(SC),lateral condyle(LC),and medial epicondyle(ME)fractures.AIM To evaluate the epidemiology of pediatric distal humerus fractures(SC,LC,and ME)from an American insurance claims database.METHODS A retrospective review was performed on patients 17 years and younger with the ICD 9 and 10 codes for SC,LC and ME fractures based on the IBM Truven MarketScan®Commercial and IBM Truven MarketScan Medicare Supplemental databases.Patients from 2015 to 2020 were queried for treatments,patient age,sex,length of hospitalization,and comorbidities.RESULTS A total of 1133 SC,154 LC,and 124 ME fractures were identified.SC fractures had the highest percentage of operation at 83%,followed by LC(78%)and ME fractures(41%).Male patients were,on average,older than female patients for both SC and ME fractures.CONCLUSION In the insurance claims databases used,SC fractures were the most reported,followed by LC fractures,and finally ME fractures.Age was identified to be a factor for how a pediatric distal humerus fractures,with patients with SC and LC fractures being younger than those with ME fractures.The peak age per injury per sex was similar to reported historic central tendencies,despite reported trends for younger physiologic development.展开更多
BACKGROUND This article presents a rare case of a complex hip fracture involving the ipsilateral femoral neck,trochanter,and femoral head,that was accompanied by hip dislocation.Currently,there is no established stand...BACKGROUND This article presents a rare case of a complex hip fracture involving the ipsilateral femoral neck,trochanter,and femoral head,that was accompanied by hip dislocation.Currently,there is no established standard treatment method for this specific type of fracture.Therefore,it is crucial to comprehensively consider factors such as patient age,fracture type,and degree of displacement to achieve a successful outcome.CASE SUMMARY A 38-year-old man sustained a comminuted fracture of his right hip as a result of a car accident.The injuries included a fracture of the femoral head,a fracture of the femoral neck,an intertrochanteric fracture of the femur,and a posterior dislocation of the hip on the same side.We opted for a treatment approach combining the use of a proximal femoral locking plate,cannulated screws,and Kirschner wires.Following the surgery,we developed an individualized rehabil-itation program to restore patient limb function.CONCLUSION For this complex fracture,we selected appropriate internal fixation and for-mulated individualized rehabilitation,which ultimately achieved good results.展开更多
Deep shale gas reservoirs have geological characteristics of high temperature,high pressure,high stress,and inferior ability to pass through fluids.The multi-stage fractured horizontal well is the key to exploiting th...Deep shale gas reservoirs have geological characteristics of high temperature,high pressure,high stress,and inferior ability to pass through fluids.The multi-stage fractured horizontal well is the key to exploiting the deep shale gas reservoir.However,during the production process,the effectiveness of the hydraulic fracture network decreases with the closure of fractures,which accelerates the decline of shale gas production.In this paper,we addressed the problems of unclear fracture closure mechanisms and low accuracy of shale gas production prediction during deep shale gas production.Then we established the fluid—solid—heat coupled model coupling the deformation and fluid flow among the fracture surface,proppant and the shale matrix.When the fluid—solid—heat coupled model was applied to the fracture network,it was well solved by our numerical method named discontinuous discrete fracture method.Compared with the conventional discrete fracture method,the discontinuous discrete fracture method can describe the three-dimensional morphology of the fracture while considering the effect of the change of fracture surface permeation coefficient on the coupled fracture—matrix flow and describing the displacement discontinuity across the fracture.Numerical simulations revealed that the degree of fracture closure increases as the production time proceeds,and the degree of closure of the secondary fractures is higher than that of the primary fractures.Shale creep and proppant embedment both increase the degree of fracture closure.The reduction in fracture surface permeability due to proppant embedment reduces the rate of fluid transfer between matrix and fracture,which has often been overlooked in the past.However,it significantly impacts shale gas production,with calculations showing a 24.7%cumulative three-year yield reduction.This study is helpful to understand the mechanism of hydraulic fracture closure.Therefore,it provides the theoretical guidance for maintaining the long-term effectiveness of hydraulic fractures.展开更多
The geometric properties of fracture surfaces significantly influence shear-seepage in rock fractures,introducing complexities to fracture modelling.The present study focuses on the hydro-mechanical behaviours of roug...The geometric properties of fracture surfaces significantly influence shear-seepage in rock fractures,introducing complexities to fracture modelling.The present study focuses on the hydro-mechanical behaviours of rough rock fractures during shear-seepage processes to reveal how dilatancy and fracture asperities affect these phenomena.To achieve this,an improved shear-flow model(SFM)is proposed with the incorporation of dilatancy effect and asperities.In particular,shear dilatancy is accounted for in both the elastic and plastic stages,in contrast to some existing models that only consider it in the elastic stage.Depending on the computation approaches for the peak dilatancy angle,three different versions of the SFM are derived based on Mohr-Coulomb,joint roughness coefficient-joint compressive strength(JRC-JCS),and Grasselli’s theories.Notably,this is a new attempt that utilizes Grasselli’s model in shearseepage analysis.An advanced parameter optimization method is introduced to accurately determine model parameters,addressing the issue of local optima inherent in some conventional methods.Then,model performance is evaluated against existing experimental results.The findings demonstrate that the SFM effectively reproduces the shear-seepage characteristics of rock fracture across a wide range of stress levels.Further sensitivity analysis reveals how dilatancy and asperity affect hydraulic properties.The relation between hydro-mechanical properties(dilatancy displacement and hydraulic conductivity)and asperity parameters is analysed.Several profound understandings of the shear-seepage process are obtained by exploring the phenomenon under various conditions.展开更多
基金Supported by 2021 Disciplinary Construction Project in School of Dentistry,Anhui Medical University,No.2021kqxkFY05.
文摘BACKGROUND Complicated crown–root fracture (CRF) involves severe injury to the crown, root,and pulp, and may be accompanied by multiple root fractures. The loss of a toothhas lifelong consequences for children and teenagers, but the maintenance of pulphealth and the calcific healing of multiple root fractures are rarely reported in theliterature.CASE SUMMARY This case reports healing of a permanent tooth with complicated crown–root andadditional root fractures, in which pulp health was maintained. A 10-year-old girlfell and fractured the root of her maxillary left central incisor at the cervical level.After the coronal fragment was repositioned, the tooth was splinted until thetooth was no longer mobile, 2 years later. Eight years after treatment, the toothhas remained asymptomatic with vital pulp and localized gingival overgrowth.Cone-beam computed tomography revealed not only calcified healing of the CRFbut also spontaneous healing in an additional undiagnosed root fracture. Thefracture line on the enamel could not be healed by hard tissue and formed agroove in the cervical crown. It was speculated that the groove was related to thelocalized gingival overgrowth.CONCLUSION This case provides a clinical perspective of the treatment of a tooth with acomplicated CRF and an additional root fracture.
基金Supported by National Natural Science Foundation of China,No.82172441Suzhou City Major Disease Multicenter Clinical Research Project,No.DZXYJ202312+2 种基金Special Funding for Jiangsu Province Science and Technology Plan(Key Research and Development Program for Social Development),No.BE2023737Gusu Health Talent Plan Scientific Research Project,No.GSWS2022109Postgraduate Research and Practice Innovation Program of Jiangsu Province,No.SJCX24_2446.
文摘BACKGROUND Fracture nonunion represents a challenging complication during fracture repair,often necessitating surgical intervention.Teriparatide,a recombinant human parathyroid hormone,has demonstrated promise in enhancing fracture healing,although its efficacy in treating established nonunion remains under investigation.CASE SUMMARY We report a case of a 27-year-old male who presented with a right humerus fracture following a traffic accident.Despite undergoing open reduction and internal fixation,the fracture resulted in a delayed union and subsequent nonunion.After 4 years of conservative management,teriparatide treatment was initiated due to persistent nonunion.Teriparatide injections were administered daily for 6 months,resulting in complete fracture healing and resolution of pain.CONCLUSION Our case demonstrates the successful use of teriparatide in treating a prolonged nonunion of a humerus fracture.Teriparatide may provide a valuable therapeutic option for established bone nonunion,even in cases that have not responded to conservative treatments.
文摘This paper describes numerical simulation of hydraulic fracturing using fracture-based continuum modeling(FBCM)of coupled geomechanical-hydrological processes to evaluate a technique for high-density fracturing and fracture caging.The simulations are innovative because of modeling discrete fractures explicitly in continuum analysis.A key advantage of FBCM is that fracture initiation and propagation are modeled explicitly without changing the domain grid(i.e.no re-meshing).Further,multiple realizations of a preexisting fracture distribution can be analyzed using the same domain grid.The simulated hydraulic fracturing technique consists of pressurizing multiple wells simultaneously:initially without permeating fluids into the rock,to seed fractures uniformly and at high density in the wall rock of the wells;followed by fluid injection to propagate the seeded fracture density hydraulically.FBCM combines the ease of continuum modeling with the potential accuracy of modeling discrete fractures and fracturing explicitly.Fractures are modeled as piecewise planar based on intersections with domain elements;fracture geometry stored as continuum properties is used to calculate parameters needed to model individual fractures;and rock behavior is modeled through tensorial aggregation of the behavior of discrete fractures and unfractured rock.Simulations are presented for previously unfractured rock and for rock with preexisting fractures of horizontal,shallow-dipping,steeply dipping,or vertical orientation.Simulations of a single-well model are used to determine the pattern and spacing for a multiple-well design.The results illustrate high-density fracturing and fracture caging through simultaneous fluid injection in multiple wells:for previously unfractured rock or rock with preexisting shallow-dipping or horizontal fractures,and in situ vertical compressive stress greater than horizontal.If preexisting fractures are steeply dipping or vertical,and considering the same in situ stress condition,well pressurization without fluid permeation appears to be the only practical way to induce new fractures and contain fracturing within the target domain.
文摘BACKGROUND Traumatic injuries,such as falling,car accidents,and crushing mostly cause spinal fractures in young and middle-aged people,and>50%of them are thoracolumbar fractures.This kind of fracture is easily combined with serious injuries to peripheral nerves and soft tissues,which causes paralysis of the lower limbs if there is no timely rehabilitation treatment.Young patients with thoracolumbar fractures find it difficult to recover after the operation,and they are prone to depression,low self-esteem,and other negative emotions.AIM To investigate the association between anxiety,depression,and social stress in young patients with thoracolumbar spine fractures and the effect on rehabilitation outcomes.METHODS This study retrospectively analyzed 100 patients admitted to the orthopedic department of Honghui Hospital,Xi’an Jiaotong University who underwent thoracolumbar spine fracture surgery from January 2022 to June 2023.The general data of the patients were assessed with the Hamilton anxiety scale(HAMA),Hamilton depression scale(HAMD),life events scale,and social support rating scale(SSRS)to identify the correlation between anxiety,depression scores,and social stress and social support.The Japanese Orthopedic Association(JOA)was utilized to evaluate the rehabilitation outcomes of the patients and to analyze the effects of anxiety and depression scores on rehabilitation.RESULTS According to the scores of HAMD and HAMA in all patients,the prevalence of depression in patients was 39%(39/100),and the prevalence of anxiety was 49%(49/100).Patients were categorized into non-depression(n=61)and depression(n=39),non-anxiety(n=51),and anxiety(n=49)groups.Statistically significant differences in gender,occupation,Pittsburgh Sleep Quality Index(PSQI)score,and monthly family income were observed between the non-depression and depression groups(P<0.05).A significant difference in occupation and PSQI score was found between the non-anxiety and anxiety groups.Both depression(r=0.207,P=0.038)and anxiety scores(r=0.473,P<0.001)were significantly and positively correlated with negative life events.The difference in negative life event scores as well as SSRS total and item scores was statist-ically significant between patients in the non-depression and depression groups(P<0.05).The difference between the non-anxiety and anxiety groups was statistically significant(P<0.05)in the negative life event scores as well as the total SSRS scores.Additionally,JOA scores were significantly lower in both anxious and depressed patients.CONCLUSION Young patients with thoracolumbar fractures are prone to anxiety and depression.Patients’anxiety and depression are closely associated with social pressure,which reduces the life pressure of young patients with thoracolumbar fractures,enhances social support,and improves the psychology of anxiety and depression.,which affects patients’recovery.
文摘BACKGROUND Extended care based on self-efficacy theory to elderly patients with intertrochanteric fractures will provide data reference to optimize the care plan of these patients,reduce patients’concurrent mental diseases,and improve prognosis.AIM To analyze the value of extended nursing based on the self-efficacy theory in older patients with intertrochanteric fractures.METHODS Older patients with intertrochanteric fractures(n=88)admitted to our hospital between January 2021 and December 2024 were randomly divided into two groups-the control group(n=44,routine nursing)and the observation group(n=44,extended nursing)-via balloting and treated for 12 weeks.The mental state,pain severity,limb function,and self-nursing ability of all patients before and after nursing were analyzed.RESULTS After nursing,the Hamilton Anxiety Scale and General Self-Efficacy Scale scores of patients in the two groups improved.Notably,Hamilton Anxiety Scale and General Self-Efficacy Scale scores in the observation group were lower and higher,respectively,than those in the control group(P<0.05).The pain severity in the observation group(2.64±0.22)was lower than that in the control group(2.85±0.41)(P<0.05).The recovery rate of limb function was higher in the observation group than in the control group(P<0.05).In addition,the self-nursing ability scores of the patients in both groups increased,with a significantly higher score in the observation group(P<0.05).CONCLUSION Extended nursing based on the self-efficacy theory can significantly improve mental state,relieve pain,and promote the recovery of limb function and self-nursing ability in older patients with intertrochanteric fractures.
基金supported by the National Natural Science Foundation of China(Grant No.41925012)Key task project for joint research and development of the Yangtze River Delta Science and Technology Innovation Community(Grant No.2022CSJGG1200)State Key Laboratory for GeoMechanics and Deep Underground Engineering(Grant No.SKLGDUEK2214).
文摘This study proposed a repeated adjustable mixture injection strategy(RAM)based microbial induced carbonate precipitation(MICP)for efficient mitigation of rock fracture leakage.Granite fractures with small apertures were investigated,and bio-sealing experiments were conducted using five different cementation solution(CS)concentrations(0.25−2 M).The results showed that the RAM-based bio-sealing method can seal and bond the small aperture rock fractures with high efficiency and uniform precipitation by adjusting the CS concentration.The RAM-based bio-sealing mechanism is attributed to the following four stages:(1)fixation of bacterial flocs onto the fracture surfaces,(2)precipitation of CaCO3 onto the fracture surfaces,(3)growth of pre-precipitated CaCO3 and adhesion of new-suspended CaCO3,and(4)bridging and clogging processes.The optimal CS concentration of 1 M resulted in a fracture filling rate up to 85%,a transmissivity reduction of 4 orders of magnitude,and a shear strength ranging from 512 kPa to 688 kPa.The bio-sealing effect was found to be influenced by the CS concentration on bacterial attachment,calcium carbonate yield and calcium carbonate bulk density.The CS concentration of 1 M promoted bacterial attachment,and increased calcium carbonate yield as well as calcium carbonate bulk density,while concentrations above 1 M had the opposite effect.The bulk density of calcium carbonate played a crucial role in the sealing and bonding performance of bio-sealed fractures,particularly at comparable filling ratios and bridging areas.The bulk density was regulated by the size of calcium carbonate crystals and was determined by Ca2+concentration in the CS.This study provides valuable insights into the RAM-based bio-sealing method,highlighting its potential for efficient rock fracture leakage mitigation through precise control of CS concentration and understanding the underlying mechanisms.
基金supported by The National Natural Science Foundation of China(Grant No.12362034)The Scientific Research Project of Inner Mongolia University of Technology(Grant Nos.DC2200000913+1 种基金DC2300001439)The Science and Technology Plan Project of Inner Mongolia Autonomous Region(Grant No.2022YFSH0047)。
文摘Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research.
基金supported by the China Scholarship Council(CSC,Grant No.202108050072)JSPS KAKENHI(Grant No.JP19KK0121)。
文摘Grouting has been the most effective approach to mitigate water inrush disasters in underground engineering due to its ability to plug groundwater and enhance rock strength.Nevertheless,there is a lack of potent numerical tools for assessing the grouting effectiveness in water-rich fractured strata.In this study,the hydro-mechanical coupled discontinuous deformation analysis(HM-DDA)is inaugurally extended to simulate the grouting process in a water-rich discrete fracture network(DFN),including the slurry migration,fracture dilation,water plugging in a seepage field,and joint reinforcement after coagulation.To validate the capabilities of the developed method,several numerical examples are conducted incorporating the Newtonian fluid and Bingham slurry.The simulation results closely align with the analytical solutions.Additionally,a set of compression tests is conducted on the fresh and grouted rock specimens to verify the reinforcement method and calibrate the rational properties of reinforced joints.An engineering-scale model based on a real water inrush case of the Yonglian tunnel in a water-rich fractured zone has been established.The model demonstrates the effectiveness of grouting reinforcement in mitigating water inrush disaster.The results indicate that increased grouting pressure greatly affects the regulation of water outflow from the tunnel face and the prevention of rock detachment face after excavation.
基金financially supported by the Innovation Fund Research Project of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK202201)。
文摘To address the issue of extensive deformation in the Tabaiyi Tunnel caused by the fault zone,nuclear magnetic resonance(NMR)technology was employed to analyze the physical and mechanical properties of waterabsorbing mudstone.This analysis aimed to understand the mechanism behind the significant deformations.Drawing from the principle of excavation stress compensation,a support scheme featuring NPR anchorcables and an asymmetric truss support system was devised.To validate the scheme,numerical analysis using a combination of the Discrete Element Method(DEM)-Finite Element Method(FEM)was conducted.Additionally,similar material model tests and engineering measurements were carried out.Field experiments were also performed to evaluate the NPR anchor-cable and truss support system,focusing on anchor cable forces,pressures between the truss and surrounding rock,pressures between the initial support and secondary lining,as well as the magnitude of settlement and convergence deformation in the surrounding rock.The results indicate that the waterinduced expansion of clay minerals,resulting from damage caused by fissure water,accelerated the softening of the mudstone's internal structure,leading to significant deformations in the Tabaiyi Tunnel under high tectonic stress.The original support design fell short as the length of the anchor rods was smaller than the expansion depth of the plastic zone.As a result,the initial support structure bore the entire load from the surrounding rock,and a non-coupled deformation contact was observed between the double-arch truss and the surrounding rock.The adoption of NPR asymmetric anchor-cable support effectively restrained the expansion and asymmetric distribution characteristics of the plastic zone.Considering the mechanical degradation caused by water absorption in mudstone,the rigid constraint provided by the truss proved crucial for controlling the stability of the surrounding rock.These research findings hold significant implications for managing large deformations in soft rock tunnels situated within fractured zones under high tectonic stress conditions.
基金supported by The National Natural Science Foundation of China(Grant Nos.12272411 and 42007259).
文摘Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature treatment were conducted with a ϕ75 mm split Hopkinson tension bar (SHTB) to investigate the mesoscopic fracture and damage properties of rock. An improved scanning electron microscopy (SEM) experimental method was used to analyze the tensile fracture surfaces of rock samples. Qualitative and quantitative analyses were performed to assess evolution of mesoscopic damage of heat-damaged rock under tensile loading. A constitutive model describing the mesoscopic fractal damage under thermo-mechanical coupling was established. The results showed that the high temperatures significantly reduced the tensile strength and fracture surface roughness of the red sandstone. The three-dimensional (3D) reconstruction of the fracture surface of the samples that experienced tensile failure at 900 °C showed a flat surface. The standard deviation of elevation and slope angle of specimen fracture surface first increased and then decreased with increasing temperature. The threshold for brittle fracture of the heat-damaged red sandstone specimens was 600 °C. Beyond this threshold temperature, local ductile fracture occurred, resulting in plastic deformation of the fracture surface during tensile fracturing. With increase of temperature, the internal meso-structure of samples was strengthened slightly at first and then deteriorated gradually, which was consistent with the change of macroscopic mechanical properties of red sandstone. The mesoscopic characteristics, such as the number, mean side length, maximum area, porosity, and fractal dimension of crack, exhibited an initial decline, followed by a gradual increase. The development of microcracks in samples had significant influence on mesoscopic fractal dimension. The mesoscopic fractal characteristics were used to establish a mesoscopic fractal damage constitutive model for red sandstone, and the agreement between the theoretical and experimental results validated the proposed model.
基金Supported by The China Scholarship Council,No.202308420035.
文摘Fracture of the lateral process of the talus(FLPT)is uncommon in clinical practice and can be easily missed or misdiagnosed.In recent years,as researchers from all over the world have further deepened their research on FLPT,there has been a breakthrough in the classification,and the methods and principles of clinical management have changed accordingly;however,there is still no standardized guideline for the diagnosis and management of FLPT,and there have been few relevant literature review articles related to this kind of fracture in the past at least 5 years.In this article,we review the clinical classification,classification-based therapeutic recommendations,and prognosis of FLPT,with the aim of providing a reference for the clinical diagnosis and management of this infrequent fracture.
基金supported by National Natural Science Foundation of China(Grant Nos.52364004,52264006,and 52164001).
文摘The fracture toughness of rocks is a critical fracturing parameter in geo-energy exploitation playing a significant role in fracture mechanics and hydraulic fracturing.The edge-notched disk bending(ENDB)specimens are employed to measure the entire range of mixed-modeⅠ/Ⅲfracture toughness of Longmaxi shale.To theoretically interpret the fracture mechanisms,this research first introduces the detailed derivations of three established fracture criteria.By distinguishing the volumetric and distortional strain energy densities,an improved three-dimensional mean strain energy density(MSED)criterion is proposed.As the critical volumetric to distortional MSED ratio decreases,the transition from tensiondominated fracture to shear-dominated fracture is observed.Our results indicate that both peak load and applied energy increase significantly with the transition from pure mode I(i.e.,tension)to pure modeⅢ(i.e.,torsion or tearing)since mode-Ⅲcracking happens in a twisted manner and mode-Ⅰcracking occurs in a coplanar manner.The macroscopic fracture signatures are consistent with those of triaxial hydraulic fracturing.The average ratio of pure mode-Ⅲfracture toughness to pure mode-Ⅰfracture toughness is 0.68,indicating that the obtained mode-Ⅲfracture resistance for a tensionbased loading system is apparent rather than true.Compared to the three mainstream fracture criteria,the present fracture criterion exhibits greater competitiveness and can successfully evaluate and predict mixed-modeⅠ/Ⅲfracture toughness of distinct materials and loading methods.
基金Specific grant number KJGG2022-1002YFKey Technologies for Exploration and Development of Onshore Unconventional Natural Gas in CNOOC’s“14th Five-Year Plan”Major Science and Technology Project.
文摘The gas production of deep coalbed methane wells in Linxing-Shenfu block decreases rapidly,the water output is high,the supporting effect is poor,the effective supporting fracture size is limited,and the migration mechanism of proppant in deep coal reservoir is not clear at present.To investigate the migration behavior of proppants in complex fractures during the volume reconstruction of deep coal and rock reservoirs,an optimization test on the conductivity of low-density proppants and simulations of proppant migration in complex fractures of deep coal reservoirs were conducted.The study systematically analyzed the impact of various fracture geometries,proppant types and fracturingfluid viscosities on proppant distribution.Furthermore,the study compared the outcomes of dynamic proppant transport experiments with simulation results.The results show that the numerical simulation is consistent with the results of the proppant dynamic sand-carrying experiment.Under the conditions of low viscosity and large pumping-rate,a high ratio of 40/70 mesh proppant can facilitate the movement of the proppant to the depths of fractures at all levels.The technical goal is to create comprehensive fracture support within intricate trapezoidal fractures in deep coal and rock reservoirs without inducing sand plugging.The sand ratio is controlled at 15%–20%,with a proppant combination ratio of 40/70:30/50:20/40=6:3:1.Proppant pumping operations can effectively address the issue of poor support in complex fractures in deep coal formations.The research results have been successfully applied to the development of deep coalbed methane in the Linxing-Shenfu block,Ordos Basin.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52074312 and 52211530097)CNPC Science and Technology Innovation Foundation(Grant No.2021DQ02-0505).
文摘Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P w)and pore pressure(P p)during drilling,which may cause wellbore instability.However,the weakening of fracture strength due to mud intrusion is not considered in most existing borehole stability analyses,which may yield significant errors and misleading predictions.In addition,only limited factors were analyzed,and the fracture distribution was oversimplified.In this paper,the impacts of mud intrusion and associated fracture strength weakening on borehole stability in fractured rocks under both isotropic and anisotropic stress states are investigated using a coupled DEM(distinct element method)and DFN(discrete fracture network)method.It provides estimates of the effect of fracture strength weakening,wellbore pressure,in situ stresses,and sealing efficiency on borehole stability.The results show that mud intrusion and weakening of fracture strength can damage the borehole.This is demonstrated by the large displacement around the borehole,shear displacement on natural fractures,and the generation of fracture at shear limit.Mud intrusion reduces the shear strength of the fracture surface and leads to shear failure,which explains that the increase in mud weight may worsen borehole stability during overbalanced drilling in fractured formations.A higher in situ stress anisotropy exerts a significant influence on the mechanism of shear failure distribution around the wellbore.Moreover,the effect of sealing natural fractures on maintaining borehole stability is verified in this study,and the increase in sealing efficiency reduces the radial invasion distance of drilling mud.This study provides a directly quantitative prediction method of borehole instability in naturally fractured formations,which can consider the discrete fracture network,mud intrusion,and associated weakening of fracture strength.The information provided by the numerical approach(e.g.displacement around the borehole,shear displacement on fracture,and fracture at shear limit)is helpful for managing wellbore stability and designing wellbore-strengthening operations.
文摘Acetabular fractures in the geriatric population are typically low-energy fractures resulting from a fall from standing height.Compromised bone quality in the elderly,as well as this population’s concomitant medical comorbidities,render the management of such fractures challenging and controversial.Non-operative management remains the mainstay of treatment,although such a choice is associated with numerous and serious complications related to both the hip joint as well as the general condition of the patient.On the other hand,operatively treating acetabular fractures(e.g.,with osteosynthesis or total hip arthroplasty)is gaining popularity.Osteosynthesis can be performed with open reduction and internal fixation or with minimally invasive techniques.Total hip arthroplasty could be performed either in the acute phase combined with osteosynthesis or as a delayed procedure after a period of non-operative management or after failed osteosynthesis of the acetabulum.Regardless of the implemented treatment,orthogeriatric co-management is considered extremely crucial,and it is currently one of the pillars of a successful outcome after an acetabular fracture.
文摘Fractures of the lateral process of the talus(FLPT)are uncommon fractures that represent a clinical challenge.Traditional radiological classification systems rely predominantly on radiographic findings.However,due to the high rate of FLPT misdiagnosis and the limited accuracy in evaluating concomitant talar injuries through plain radiographs,novel imaging classification systems have been developed that aim to enhance the diagnosis of concomitant talar injuries,thereby optimizing patient management and reducing the incidence of long-term complications.
文摘BACKGROUND Distal humerus elbow fractures are one of the most common traumatic fractures seen in pediatric patients and present as three main types:Supracondylar(SC),lateral condyle(LC),and medial epicondyle(ME)fractures.AIM To evaluate the epidemiology of pediatric distal humerus fractures(SC,LC,and ME)from an American insurance claims database.METHODS A retrospective review was performed on patients 17 years and younger with the ICD 9 and 10 codes for SC,LC and ME fractures based on the IBM Truven MarketScan®Commercial and IBM Truven MarketScan Medicare Supplemental databases.Patients from 2015 to 2020 were queried for treatments,patient age,sex,length of hospitalization,and comorbidities.RESULTS A total of 1133 SC,154 LC,and 124 ME fractures were identified.SC fractures had the highest percentage of operation at 83%,followed by LC(78%)and ME fractures(41%).Male patients were,on average,older than female patients for both SC and ME fractures.CONCLUSION In the insurance claims databases used,SC fractures were the most reported,followed by LC fractures,and finally ME fractures.Age was identified to be a factor for how a pediatric distal humerus fractures,with patients with SC and LC fractures being younger than those with ME fractures.The peak age per injury per sex was similar to reported historic central tendencies,despite reported trends for younger physiologic development.
基金Supported by the Peak Discipline of Traditional Chinese Medicine(Orthopedics and Traumatology Integrated Traditional Chinese and Western Medicine),No.YC-2023-0601.
文摘BACKGROUND This article presents a rare case of a complex hip fracture involving the ipsilateral femoral neck,trochanter,and femoral head,that was accompanied by hip dislocation.Currently,there is no established standard treatment method for this specific type of fracture.Therefore,it is crucial to comprehensively consider factors such as patient age,fracture type,and degree of displacement to achieve a successful outcome.CASE SUMMARY A 38-year-old man sustained a comminuted fracture of his right hip as a result of a car accident.The injuries included a fracture of the femoral head,a fracture of the femoral neck,an intertrochanteric fracture of the femur,and a posterior dislocation of the hip on the same side.We opted for a treatment approach combining the use of a proximal femoral locking plate,cannulated screws,and Kirschner wires.Following the surgery,we developed an individualized rehabil-itation program to restore patient limb function.CONCLUSION For this complex fracture,we selected appropriate internal fixation and for-mulated individualized rehabilitation,which ultimately achieved good results.
基金the supports provided by China University of Petroleum,Beijing(Grand No.ZX20230042)the National Natural Science Foundation of China(Grand No.52334001and Grand No.51904314)。
文摘Deep shale gas reservoirs have geological characteristics of high temperature,high pressure,high stress,and inferior ability to pass through fluids.The multi-stage fractured horizontal well is the key to exploiting the deep shale gas reservoir.However,during the production process,the effectiveness of the hydraulic fracture network decreases with the closure of fractures,which accelerates the decline of shale gas production.In this paper,we addressed the problems of unclear fracture closure mechanisms and low accuracy of shale gas production prediction during deep shale gas production.Then we established the fluid—solid—heat coupled model coupling the deformation and fluid flow among the fracture surface,proppant and the shale matrix.When the fluid—solid—heat coupled model was applied to the fracture network,it was well solved by our numerical method named discontinuous discrete fracture method.Compared with the conventional discrete fracture method,the discontinuous discrete fracture method can describe the three-dimensional morphology of the fracture while considering the effect of the change of fracture surface permeation coefficient on the coupled fracture—matrix flow and describing the displacement discontinuity across the fracture.Numerical simulations revealed that the degree of fracture closure increases as the production time proceeds,and the degree of closure of the secondary fractures is higher than that of the primary fractures.Shale creep and proppant embedment both increase the degree of fracture closure.The reduction in fracture surface permeability due to proppant embedment reduces the rate of fluid transfer between matrix and fracture,which has often been overlooked in the past.However,it significantly impacts shale gas production,with calculations showing a 24.7%cumulative three-year yield reduction.This study is helpful to understand the mechanism of hydraulic fracture closure.Therefore,it provides the theoretical guidance for maintaining the long-term effectiveness of hydraulic fractures.
基金support from the National Natural Science Foundation of China(Grant Nos.51991392 and 42293355).
文摘The geometric properties of fracture surfaces significantly influence shear-seepage in rock fractures,introducing complexities to fracture modelling.The present study focuses on the hydro-mechanical behaviours of rough rock fractures during shear-seepage processes to reveal how dilatancy and fracture asperities affect these phenomena.To achieve this,an improved shear-flow model(SFM)is proposed with the incorporation of dilatancy effect and asperities.In particular,shear dilatancy is accounted for in both the elastic and plastic stages,in contrast to some existing models that only consider it in the elastic stage.Depending on the computation approaches for the peak dilatancy angle,three different versions of the SFM are derived based on Mohr-Coulomb,joint roughness coefficient-joint compressive strength(JRC-JCS),and Grasselli’s theories.Notably,this is a new attempt that utilizes Grasselli’s model in shearseepage analysis.An advanced parameter optimization method is introduced to accurately determine model parameters,addressing the issue of local optima inherent in some conventional methods.Then,model performance is evaluated against existing experimental results.The findings demonstrate that the SFM effectively reproduces the shear-seepage characteristics of rock fracture across a wide range of stress levels.Further sensitivity analysis reveals how dilatancy and asperity affect hydraulic properties.The relation between hydro-mechanical properties(dilatancy displacement and hydraulic conductivity)and asperity parameters is analysed.Several profound understandings of the shear-seepage process are obtained by exploring the phenomenon under various conditions.