期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Evaluation of Well Spacing for Primary Development of Fractured Horizontal Wells in Tight Sandstone Gas Reservoirs
1
作者 Fang Li Juan Wu +3 位作者 Haiyong Yi Lihong Wu Lingyun Du Yuan Zeng 《Fluid Dynamics & Materials Processing》 EI 2024年第5期1015-1030,共16页
Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this s... Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors,such as strong reservoir heterogeneity and seepage mechanisms.In this study,the stress sensitivity and threshold pressure gradient of various types of reservoirs are quantitatively evaluated through reservoir seepage experiments.On the basis of these experiments,a numerical simulation model(based on the special seepage mechanism)and an inverse dynamic reserve algorithm(with different equivalent drainage areas)were developed.The well spacing ranges of Classes I,II,and III wells in the Q gas field are determined to be 802–1,000,600–662,and 285–400 m,respectively,with their average ranges as 901,631,and 342.5 m,respectively.By considering both the pairs of parallel well groups and series well groups as examples,the reliability of the calculation results is verified.It is shown that the combination of the two models can reduce errors and provide accurate results. 展开更多
关键词 well spacing for primary development tight gas reservoir fractured horizontal well threshold pressure gradient stress sensitivity
下载PDF
Revolutionizing Tight Reservoir Production: A Novel Dual-Medium Unsteady Seepage Model for Optimizing Volumetrically Fractured Horizontal Wells
2
作者 Xinyu Zhao Mofeng Li +1 位作者 Kai Yan Li Yin 《Energy Engineering》 EI 2023年第12期2933-2949,共17页
This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs,employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal we... This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs,employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal wells.Traditional models often fail to fully capture the complex dynamics associated with these unconventional reservoirs.In a significant departure from these models,our approach incorporates an initiation pressure gradient and a discrete fracture seepage network,providing a more realistic representation of the seepage process.The model also integrates an enhanced fluid-solid interaction,which allows for a more comprehensive understanding of the fluid-structure interactions in the reservoir.This is achieved through the incorporation of improved permeability and stress coupling,leading to more precise predictions of reservoir behavior.The numerical solutions derived from the model are obtained through the sophisticated finite element method,ensuring high accuracy and computational efficiency.To ensure the model’s reliability and accuracy,the outcomes were tested against a real-world case,with results demonstrating strong alignment.A key revelation from the study is the significant difference between uncoupled and fully coupled volumetrically fractured horizontal wells,challenging conventional wisdom in the field.Additionally,the study delves into the effects of stress,fracture length,and fracture number on reservoir production,contributing valuable insights for the design and optimization of tight reservoirs.The findings from this study have the potential to revolutionize the field of tight reservoir prediction and management,offering significant advancements in petroleum engineering.The proposed approach brings forth a more nuanced understanding of tight reservoir systems and opens up new avenues for optimizing reservoir management and production. 展开更多
关键词 Tight reservoirs production prediction model stress effects fractured horizontal well
下载PDF
Blasingame production decline type curves for analysing a multi-fractured horizontal well in tight gas reservoirs 被引量:4
3
作者 魏明强 段永刚 +3 位作者 陈伟 方全堂 李政澜 郭希冉 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第2期394-401,共8页
Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods fo... Production decline analysis has been considered as an important method to obtain the flow parameters, reservoir properties and original gas in place. Although advanced Blasingame production decline analysis methods for vertical wells, fractured wells and horizontal wells are widely used, limited study has conducted on Blasingame production decline type curves for multi-fractured horizontal well(MFHW). Based on the perpendicular bisection(PEBI) grids, a numerical model was developed and the solution was obtained using control volume finite element method and the fully implicit method. Blasingame production decline-type curves of the infinitely conductive MFHW were plotted through computer programming. A field case was presented to analyse and verify the model developed. Five flow regimes, including early formation linear flow, early radial flow, compound linear flow, transient flow and pseudo-radial flow, are recognized. Fracture spacing is the main factor that affects early radial flow, compound linear flow and transient flow, the distance from the well to the circular boundary affects the pseudo-radial flow, and the type curves are also significantly affected by the formation permeability, fracture number and fracture half-length. The validation of field case suggests that the Blasingame production decline type curves proposed in this work can be applied to the production decline analysis for MFHW in tight gas reservoirs. 展开更多
关键词 tight gas reservoir fractured horizontal well unstructured grid production decline type curves
下载PDF
Pressure transient analysis of a finite-conductivity multiple fractured horizontal well in linear composite gas reservoirs 被引量:1
4
作者 REN Jun-jie GAO Yang-yang +2 位作者 ZHENG Qiao GUO Ping WANG De-long 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期780-796,共17页
Faulted gas reservoirs are very common in reality,where some linear leaky faults divide the gas reservoir into several reservoir regions with distinct physical properties.This kind of gas reservoirs is also known as l... Faulted gas reservoirs are very common in reality,where some linear leaky faults divide the gas reservoir into several reservoir regions with distinct physical properties.This kind of gas reservoirs is also known as linear composite(LC)gas reservoirs.Although some analytical/semi-analytical models have been proposed to investigate pressure behaviors of producing wells in LC reservoirs based on the linear composite ideas,almost all of them focus on vertical wells and studies on multiple fractured horizontal wells are rare.After the pressure wave arrives at the leaky fault,pressure behaviors of multiple fractured horizontal wells will be affected by the leaky faults.Understanding the effect of leaky faults on pressure behaviors of multiple fractured horizontal wells is critical to the development design.Therefore,a semi-analytical model of finite-conductivity multiple fractured horizontal(FCMFH)wells in LC gas reservoirs is established based on Laplace-space superposition principle and fracture discrete method.The proposed model is validated against commercial numerical simulator.Type curves are obtained to study pressure characteristics and identify flow regimes.The effects of some parameters on type curves are discussed.The proposed model will have a profound effect on developing analytical/semi-analytical models for other complex well types in LC gas reservoirs. 展开更多
关键词 semi-analytical model linear composite gas reservoir multiple fractured horizontal well finite-conductivity hydraulic fracture pressure behavior
下载PDF
Influence of gas transport mechanisms on the productivity of multi-stage fractured horizontal wells in shale gas reservoirs 被引量:1
5
作者 Wei Wang Jun Yao +1 位作者 Hai Sun Wen-Hui Song 《Petroleum Science》 SCIE CAS CSCD 2015年第4期664-673,共10页
In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer- size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, w... In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer- size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, which considers the influence of viscous flow, Knudsen diffusion, surface diffusion, and adsorption layer thickness. A dis- crete-fracture model is used to simplify the fracture mod- cling, and a finite element method is applied to solve the model. The numerical simulation results indicate that with a decrease in the intrinsic matrix permeability, Knudsen diffusion and surface diffusion contributions to production become large and cannot be ignored. The existence of an adsorption layer on the nanopore surfaces reduces the effective pore radius and the effective porosity, resulting in low production from fractured horizontal wells. With a decrease in the pore radius, considering the adsorption layer, the production reduction rate increases. When the pore radius is less than 10 nm, because of the combined impacts of Knudsen diffusion, surface diffusion, and adsorption layers, the production of multi-stage fractured horizontal wells increases with a decrease in the pore pressure. When the pore pressure is lower than 30 MPa, the rate of production increase becomes larger with a decrease in pore pressure. 展开更多
关键词 Shale gas - Transport mechanisms ~Numerical simulation - fractured horizontal wellProduction
下载PDF
Investigation of low water recovery based on gas-water two-phase low-velocity Non-Darcy flow model for hydraulically fractured horizontal wells in shale 被引量:1
6
作者 Yong He Jianjun Wang +4 位作者 Xiaoqing Huang Yue Du Xiang Li Wenshu Zha Daolun Li 《Petroleum》 EI CSCD 2023年第3期364-372,共9页
Various mechanisms are employed to interpret the low water recovery during the shale-gas production period,such as extra-trapped water in the fracture network,water imbibition due to osmotic pressure and capillary pre... Various mechanisms are employed to interpret the low water recovery during the shale-gas production period,such as extra-trapped water in the fracture network,water imbibition due to osmotic pressure and capillary pressure.These lead to the difficulty of water flow,which could be described by lowvelocity non-Darcy's law known as threshold pressure gradient(TPG).In this paper we firstly employ the low-velocity non-Darcy's law to describe the water flow and use Darcy flow accounting for slip flow and free molecular flow mechanisms to model gas flow in the shale formation.The sensitive study using numerical simulation shows that the proposed flow model could model the low fracturing liquid recovery and that large pseudo TPG leads to lower fracturing liquid recovery.Thus,the proposed model would give new insight to model the low water recovery in shale formations. 展开更多
关键词 Low water recovery Low-velocity non-Darcy flow Pseudo threshold pressure gradient Hydraulically fractured horizontal wells Shale gas
原文传递
Simulation of the Production Performances of Horizontal Wells with a Fractured Shale Gas Reservoir
7
作者 Hongsha Xiao Ruihan Zhang +6 位作者 Man Chen Cui Jing Shangjun Gao Chao Chen Huiyan Zhao Xin Huang Bo Kang 《Fluid Dynamics & Materials Processing》 EI 2023年第7期1803-1815,共13页
The production performances of a well with a shale gas reservoir displaying a complex fracture network are simulated.In particular,a micro-seismic cloud diagram is used to describe the fracture network,and accordingly... The production performances of a well with a shale gas reservoir displaying a complex fracture network are simulated.In particular,a micro-seismic cloud diagram is used to describe the fracture network,and accordingly,a production model is introduced based on a multi-scale flow mechanism.A finite volume method is then exploited for the integration of the model equations.The effects of apparent permeability,conductivity,Langmuir volume,and bottom hole pressure on gas well production are studied accordingly.The simulation results show that ignoring the micro-scale flow mechanism of the shale gas leads to underestimating the well gas production.It is shown that after ten years of production,the cumulative gas production difference between the two scenarios with and without considering the micro-scale flow mechanisms is 19.5%.The greater the fracture conductivity,the higher the initial gas production of the gas well and the cumulative gas production.The larger the Langmuir volume,the higher the gas production rate and the cumulative gas production.With the reduction of the bottom hole pressure,the cumulative gas production increases,but the growth rate gradually decreases. 展开更多
关键词 Shale gas reservoir complex fracture network fractured horizontal well numerical simulation
下载PDF
Multistage hydraulic fracturing of a horizontal well for hard roof related coal burst control:Insights from numerical modelling to field application
8
作者 Jiaxin Zhuang Zonglong Mu +4 位作者 Wu Cai Hu He Lee J.Hosking Guojun Xi Biao Jiao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1095-1114,共20页
Multistage hydraulic fracturing of horizontal wells(MFHW)is a promising technology for controlling coal burst caused by thick and hard roofs in China.However,challenges remain regarding the MFHW control mechanism of c... Multistage hydraulic fracturing of horizontal wells(MFHW)is a promising technology for controlling coal burst caused by thick and hard roofs in China.However,challenges remain regarding the MFHW control mechanism of coal burst and assessment of the associated fracturing effects.In this study,these challenges were investigated through numerical modelling and field applications,based on the actual operating parameters of MFHW for hard roofs in a Chinese coal mine.A damage parameter(D)is proposed to assess the degree of hydraulic fracturing in the roof.The mechanisms and effects of MFHW for controlling coal burst are analyzed using microseismic(MS)data and front-abutment stress distribution.Results show that the degree of fracturing can be categorized into lightly-fractured(D≤0.3),moderately fractured(0.3<D≤0.6),well-fractured(0.6<D≤0.9),and over-fractured(0.9<D≤0.95).A response stage in the fracturing process,characterized by a slowdown in crack development,indicates the transition to a wellfractured condition.After MFHW,the zone range and peak value of the front-abutment stress decrease.Additionally,MS events shift from near the coal seam to the fractured roof layers,with the number of MS events increases while the average MS energy decreases.The MFHW control mechanisms of coal bursts involve mitigating mining-induced stress and reducing seismic activity during longwall retreat,ensuring stresses remain below the ultimate stress level.These findings provide a reference for evaluating MFHW fracturing effects and controlling coal burst disasters in engineering. 展开更多
关键词 Coal burst Multistage hydraulic fracturing of horizontal wells Mining-induced seismicity Mining-induced stress Effectiveness evaluation
下载PDF
An optimal fracture geometry design method of fractured horizontal wells in heterogeneous tight gas reservoirs 被引量:4
9
作者 ZENG FanHui KE YuBiao GUO JianChun 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第2期241-251,共11页
In this work, the unified fracture design (UFD) is extended for the first time to the fractured horizontal wells in heterogeneous closed box-shaped tight gas reservoirs. Utilizing the direct boundary element method ... In this work, the unified fracture design (UFD) is extended for the first time to the fractured horizontal wells in heterogeneous closed box-shaped tight gas reservoirs. Utilizing the direct boundary element method and influence function, the dimensionless fracture productivity index is obtained and expressed in the function of proppant volume and fracture geometry at the pseu- do-steady state. With the iterative method, the effectively propped permeability, kfe, is corrected using the i^-situ Reynolds number, NRe. The goal of this paper is to present a new UFD extension to design the proppant volume and the optimal fracture geometry. The results show that there exists an optimal proppant volume for a certain reservoir. The small aspect ratio (yJXe) and high permeability reservoirs need short and wide fractures to diminish the non-Darcy effect. On the contrary, long and narrow fractures are required for the large aspect ratio and low permeability reservoirs. A small proppant volame is prone to creating long fractures, while a relatively large proppant volume creates wide fractures. The new extension can be used to evaluate the previous fracture parameters and design the following fracture parameters of the fractured horizontal well in heterogeneous tight gas reservoirs, with the non-Darcy effect taken into account. 展开更多
关键词 tight gas reservoir HETEROGENEITY non-Darcy effect fractured horizontal well fracture geometry design
原文传递
Fracture network types revealed by well test curves for shale reservoirs in the Sichuan Basin,China
10
作者 Yanyan Wang Hua Liu +2 位作者 Xiaohu Hu Cheng Dai Sidong Fang 《Energy Geoscience》 EI 2024年第1期264-274,共11页
Pressure buildup testing can be used to analyze fracture network characteristics and conduct quantitative interpretation of relevant parameters for shale gas wells,thus providing bases for assessing the well productiv... Pressure buildup testing can be used to analyze fracture network characteristics and conduct quantitative interpretation of relevant parameters for shale gas wells,thus providing bases for assessing the well productivity and formulating proper development strategies.This study establishes a new well test interpretation model for fractured horizontal wells based on seepage mechanisms of shale reservoirs and proposes a method for identifying fracturing patterns based on the characteristic slopes of pressure buildup curves and curve combination patterns.The pressure buildup curve patterns are identified to represent three types of shale reservoirs in the Sichuan Basin,namely the moderately deep shale reservoirs with high pressure,deep shale reservoirs with ultra-high pressure,and moderately deep shale reservoirs with normal pressure.Based on this,the relationship between the typical pressure buildup curve patterns and the fracture network types are put forward.Fracturing effects of three types of shale gas reservoir are compared and analyzed.The results show that typical flow patterns of shale reservoirs include bilinear flow in primary and secondary fractures,linear flow in secondary fractures,bilinear flow in secondary fractures and matrix,and linear flow in matrix.The fracture network characteristics can be determined using the characteristic slopes of pressure buildup curves and curve combinations.The linear flow in early secondary fractures is increasingly distinct with an increase in primary fracture conductivity.Moreover,the bilinear flow in secondary fractures and matrix and the subsequent linear flow in the matrix occur as the propping and density of secondary fractures increase.The increase in the burial depth,in-situ stress,and stress difference corresponds to a decrease in the propping of primary fractures that expand along different directions in the shale gas wells in the Sichuan Basin.Four pressure buildup curve patterns exist in the Sichuan Basin and its periphery.The pattern of pressure buildup curves of shale reservoirs in the Yongchuan area can be described as 1/2/→1/4,indicating limited stimulated reservoir volume,poorly propped secondary fractures,and the forming of primary fractures that extend only to certain directions.The pressure buildup curves of shale reservoirs in the main block of the Fuling area show a pattern of 1/4/→1/2 or 1/2,indicating greater stimulated reservoir volume,well propped secondary fractures,and the forming of complex fracture networks.The pattern of pressure buildup curves of shale reservoirs in the Pingqiao area is 1/2/→1/4→/1/2,indicating a fracturing effect somewhere between that of the Fuling and Yongchuan areas.For reservoirs with normal pressure,it is difficult to determine fracture network characteristics from pressure buildup curves due to insufficient formation energy and limited liquid drainage. 展开更多
关键词 Shale gas fractured horizontal well well testing interpretation Flow pattern characterization Parameter inversion Fracture network characteristics Sichuan basin
下载PDF
Pressure transient analysis of multiple fractured horizontal wells in naturally fractured unconventional reservoirs based on fractal theory and fractional calculus
11
作者 Daihong Gu Daoquan Ding +3 位作者 Zeli Gao Aihua Zhang Leng Tian Tianpeng Wu 《Petroleum》 2017年第3期326-339,共14页
Currently,most models for multiple fractured horizontal wells(MFHWs)in naturally fractured unconventional reservoirs(NFURs)are based on classical Euclidean models which implicitly assume a uniform distribution of natu... Currently,most models for multiple fractured horizontal wells(MFHWs)in naturally fractured unconventional reservoirs(NFURs)are based on classical Euclidean models which implicitly assume a uniform distribution of natural fractures and that all fractures are homogeneous.While fractal theory provides a powerful method to describe the disorder,heterogeneity,uncertainty and complexity of the NFURs.In this paper,a fractally fractional diffusion model(FFDM)for MFHWs in NFURs is established based on fractal theory and fractional calculus.Particularly,fractal theory is used to describe the heterogeneous,complex fracture network,with consideration of anomalous behavior of diffusion process in NFURs by employing fractional calculus.The Laplace transformation,line source function,dispersion method,and superposition principle are used to solve this new model.The pressure responses in the real time domain are obtained with Stehfest numerical inversion algorithms.The type curves of MFHW with three different outer boundaries are plotted.Sensitivity analysis of some related parameters are discussed as well.This new model provides the relatively more accurate and appropriate evaluation results for pressure transient analysis for MFHWs in NFURs,which could be applied to accurately interpret the real pressure data of an MFHW in field. 展开更多
关键词 Fractal theory Anomalous diffusion Fractional calculus Naturally fractured unconventional RESERVOIRS Multiple fractured horizontal well Pressure responses
原文传递
Intelligent identification and real-time warning method of diverse complex events in horizontal well fracturing
12
作者 YUAN Bin ZHAO Mingze +2 位作者 MENG Siwei ZHANG Wei ZHENG He 《Petroleum Exploration and Development》 SCIE 2023年第6期1487-1496,共10页
The existing approaches for identifying events in horizontal well fracturing are difficult, time-consuming, inaccurate, and incapable of real-time warning. Through improvement of data analysis and deep learning algori... The existing approaches for identifying events in horizontal well fracturing are difficult, time-consuming, inaccurate, and incapable of real-time warning. Through improvement of data analysis and deep learning algorithm, together with the analysis on data and information of horizontal well fracturing in shale gas reservoirs, this paper presents a method for intelligent identification and real-time warning of diverse complex events in horizontal well fracturing. An identification model for "point" events in fracturing is established based on the Att-BiLSTM neural network, along with the broad learning system (BLS) and the BP neural network, and it realizes the intelligent identification of the start/end of fracturing, formation breakdown, instantaneous shut-in, and other events, with an accuracy of over 97%. An identification model for "phase" events in fracturing is established based on enhanced Unet++ network, and it realizes the intelligent identification of pump ball, pre-acid treatment, temporary plugging fracturing, sand plugging, and other events, with an error of less than 0.002. Moreover, a real-time prediction model for fracturing pressure is built based on the Att-BiLSTM neural network, and it realizes the real-time warning of diverse events in fracturing. The proposed method can provide an intelligent, efficient and accurate identification of events in fracturing to support the decision-making. 展开更多
关键词 horizontal well fracturing fracturing events intelligent identification real-time warning deep learning
下载PDF
Productivity analysis of horizontal wells intercepted by multiple finite-conductivity fractures 被引量:7
13
作者 Wang Xiaodong Li Guanghe Wang Fei 《Petroleum Science》 SCIE CAS CSCD 2010年第3期367-371,共5页
Horizontal wells in the anisotropic reservoirs can be stimulated by hydraulic fracturing in order to create multiple finite-conductivity vertical fractures. Several methods for evaluating the productivity of the horiz... Horizontal wells in the anisotropic reservoirs can be stimulated by hydraulic fracturing in order to create multiple finite-conductivity vertical fractures. Several methods for evaluating the productivity of the horizontal wells have been presented in the literature. With such methods, however, it is still difficult to obtain an accurate result. This paper firstly presents the dimensionless conductivity theory of vertical fractures. Then models for calculating the equivalent wellbore radius and the skin factor due to flow convergence to the well bore are proposed after analyzing the steady-state flow in porous reservoirs. By applying the superposition principle to the pressure drop, a new method for evaluating the productivity of horizontal wells intercepted by multiple finite-conductivity fractures is developed. The influence of fracture conductivity and fracture half length on the horizontal well productivity is quantitatively analyzed with a synthetic case. Optimum fracture number and fracture space are further discussed in this study. The results prove that the method outlined here should be useful to design optimum fracturing of horizontal wells. 展开更多
关键词 Production rate analysis fractured horizontal wells finite-conductivity vertical fractures fracturing design optimization
下载PDF
Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs 被引量:4
14
作者 LEI Qun XU Yun +10 位作者 CAI Bo GUAN Baoshan WANG Xin BI Guoqiang LI Hui LI Shuai DING Bin FU Haifeng TONG Zheng LI Tao ZHANG Haoyu 《Petroleum Exploration and Development》 CSCD 2022年第1期191-199,共9页
By systematically summarizing horizontal well fracturing technology abroad for shale oil and gas reservoirs since the “13th Five-Year Plan”, this article elaborates new horizontal well fracturing features in 3D deve... By systematically summarizing horizontal well fracturing technology abroad for shale oil and gas reservoirs since the “13th Five-Year Plan”, this article elaborates new horizontal well fracturing features in 3D development of stacked shale reservoirs, small well spacing and dense well pattern, horizontal well re-fracturing, fracturing parameters optimization and cost control. In light of requirements on horizontal well fracturing technology in China, we have summarized the technological progress in simulation of multi-fracture propagation, horizontal well frac-design, electric-drive fracturing equipment, soluble tools and low-cost downhole materials and factory-like operation. On this basis, combined with the demand analysis of horizontal well fracturing technology in the “14th Five-Year Plan” for unconventional shale oil and gas, we suggest strengthening the research and development in the following 7 aspects:(1) geology-engineering integration;(2) basic theory and design optimization of fracturing for shale oil and gas reservoirs;(3) development of high-power electric-drive fracturing equipment;(4) fracturing tool and supporting equipment for long horizontal section;(5) horizontal well flexible-sidetracking drilling technology for tapping remaining oil;(6) post-frac workover technology for long horizontal well;(7) intelligent fracturing technology. 展开更多
关键词 shale oil and gas horizontal well fracturing fracturing equipment fracturing parameter three-dimensional development intelligent fracturing
下载PDF
Horizontally root fractured teeth with pulpal vitality——two case reports
15
作者 Luciano Silva Pamella Alvares +4 位作者 Jose Alcides Arruda Leni Veronica Silva Cleomar Rodrigues Ana Paula Veras Sobral Marcia Silveira 《World Journal of Radiology》 CAS 2016年第12期928-932,共5页
This case study reports the successful outcome of horizontal root fractures of two different patients, which took place in permanent incisors. Report 1 describes a case of a 29-year-old patient who suffered a mandibul... This case study reports the successful outcome of horizontal root fractures of two different patients, which took place in permanent incisors. Report 1 describes a case of a 29-year-old patient who suffered a mandibular trauma affecting mainly the lower central incisors, caused by a car accident. A panoramic radiograph was taken right after the accident and showed a horizontal root fracture in the middle third of tooth 42, which went untreated. Report 2 illustrates a case of a 17-year-old male patient who searched for orthodontic therapy and the periapical radiograph showed horizontal root fracture in tooth 11 caused by a previous trauma, which went untreated as well. There was healing through the reestablishment of pulp activity and dental coloration without professional intervention. 展开更多
关键词 horizontal root fractures Pulpal vitality Periapical radiograph
下载PDF
Successful Fracturing in First Horizontal Well in Changqing Oilfield
16
作者 Xiao Bo 《China Oil & Gas》 CAS 1995年第2期64-64,共1页
SuccessfulFracturinginFirstHorizontalWellinChangqingOilfield¥XiaoBoSaipingWellNo.1isthefirstscientificandtec... SuccessfulFracturinginFirstHorizontalWellinChangqingOilfield¥XiaoBoSaipingWellNo.1isthefirstscientificandtechnologicaltestwel... 展开更多
关键词 Successful Fracturing in First horizontal well in Changqing Oilfield
下载PDF
Impacts of proppant distribution on development of tight oil reservoirs with threshold pressure gradient
17
作者 Ming Yue Wei-Yao Zhu +3 位作者 Fei-Fei Gou Tian-Ru Song Yu-Chun You Qi-Tao Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期445-457,共13页
Field evidence indicates that proppant distribution and threshold pressure gradient have great impacts on well productivity.Aiming at the development of unconventional oil reservoirs in Triassic Chang-7 Unit,Ordos Bas... Field evidence indicates that proppant distribution and threshold pressure gradient have great impacts on well productivity.Aiming at the development of unconventional oil reservoirs in Triassic Chang-7 Unit,Ordos Basin of China,we presented an integrated workflow to investigate how(1)proppant placement in induced fracture and(2)non-linear flow in reservoir matrix would affect well productivity and fluid flow in the reservoir.Compared with our research before(Yue et al.,2020),here we extended this study into the development of multi-stage fractured horizontal wells(MFHWs)with large-scale complicated fracture geometry.The integrated workflow is based on the finite element method and consists of simulation models for proppant-laden fluid flow,fracture flow,and non-linear seepage flow,respectively.Simulation results indicate that the distribution of proppant inside the induced cracks significantly affects the productivity of the MFHW.When we assign an idealized proppant distribution instead of the real distribution,there will be an overestimation of 44.98%in daily oil rate and 30.63%in cumulative oil production after continuous development of 1000 days.Besides,threshold pressure gradient(TPG)also significantly affects the well performance in tight oil reservoirs.If we simply apply linear Darcy’s law to the reservoir matrix,the overall cumulative oil production can be overrated by 77%after 1000 days of development.In general,this research provides new insights into the development of tight oil reservoirs with TPG and meanwhile reveals the significance of proppant distribution and non-linear fluid flow in the production scenario design. 展开更多
关键词 Proppant distribution Tight oil reservoir Multi-stage fractured horizontal well Threshold pressure gradient Moving boundary
下载PDF
Development and Application of a Production Data Analysis Model for a Shale Gas Production Well 被引量:2
18
作者 Dongkwon Han Sunil Kwon 《Fluid Dynamics & Materials Processing》 EI 2020年第3期411-424,共14页
This paper presents the development and application of a production data analysis software that can analyze and forecast the production performance and reservoir properties of shale gas wells.The theories used in the ... This paper presents the development and application of a production data analysis software that can analyze and forecast the production performance and reservoir properties of shale gas wells.The theories used in the study were based on the analytical and empirical approaches.Its reliability has been confirmed through comparisons with a commercial software.Using transient data relating to multi-stage hydraulic fractured horizontal wells,it was confirmed that the accuracy of the modified hyperbolic method showed an error of approximately 4%compared to the actual estimated ultimate recovery(EUR).On the basis of the developed model,reliable productivity forecasts have been obtained by analyzing field production data relating to wells in Canada.The EUR was computed as 9.6 Bcf using the modified hyperbolic method.Employing the Pow Law Exponential method,the EUR would be 9.4 Bcf.The models developed in this study will allow in the future integration of new analytical and empirical theories in a relatively readily than commercial models. 展开更多
关键词 Production data analysis shale gas multi-stage hydraulic fractured horizontal wells estimated ultimate recovery
下载PDF
An Integrated Optimization Method for CO_(2) Pre-Injection during Hydraulic Fracturing in Heavy Oil Reservoirs
19
作者 Hong Dong Xiding Gao +6 位作者 Xinqi Zhang Qian Wang Haipeng Xu Binrui Wang Chengguo Gao Kaiwen Luo Hengyi Jiang 《Fluid Dynamics & Materials Processing》 EI 2024年第9期1971-1991,共21页
CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability... CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability,maintains reservoir pressure,and increases reservoir drainage capacity.Taking the Badaowan Formation as an example,in this study a detailed three-dimensional geomechanical model based on static data from well logging interpretations is elaborated,which can take into account both vertical and horizontal geological variations and mechanical characteristics.A comprehensive analysis of the impact of key construction parameters on Pre-CO_(2) based fracturing(such as cluster spacing and injection volume),is therefore conducted.Thereafter,using optimized construction parameters,a non-structured grid for dynamic development prediction is introduced,and the capacity variations of different production scenarios are assessed.On the basis of the simulation results,reasonable fracturing parameters are finally determined,including cluster spacing,fracturing fluid volume,proppant concentration,and well spacing. 展开更多
关键词 Heavy oil reservoir pre-storage CO_(2)energy fracturing horizontal well fracturing parameters numerical simulation
下载PDF
Rock physics and seismic modeling ofshale reservoirs with horizontal fractures 被引量:2
20
作者 LIU Xiwu DONG Ning GUO Zhiqi 《Global Geology》 2016年第2期85-94,共10页
The presence of horizontal fractures enhances seismic anisotropy of shales. Calculation based on the effective medium theory indicates that horizontal fractures have little effects on velocities along the direction pa... The presence of horizontal fractures enhances seismic anisotropy of shales. Calculation based on the effective medium theory indicates that horizontal fractures have little effects on velocities along the direction parallel to fractures,but can significantly reduce velocities along the direction normal to fractures. Seismic responses of shales with horizontal fractures are calculated based on the reflector model and the anisotropic propagator matrix method,in which the reflections are a combination of the contrast in impedance due to the variations in fracture density,anisotropic propagation of waves within the shales,and the tuning and interferences associated with layer thickness. Calculated results indicate that seismic reflections are sensitive to reservoir layer thickness and fracture density. Anisotropic propagation alters amplitudes and phases of reflections. It corresponds to higher reflection amplitudes for the case of surrounding sandstone with higher velocity because the increase in fracture density increases the contrast in impedance between the shale and sandstone. In contrast,the surrounding sandstone with lower velocity corresponds to lower reflection amplitudes for the increase in fracture density. 展开更多
关键词 SHALE horizontal fractures reflector model propagator matrix method AVO
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部