期刊文献+
共找到3,289篇文章
< 1 2 165 >
每页显示 20 50 100
Regulation of Pore Structure and Hightemperature Fracture Behavior of CACbonded Alumina-Spinel Castables Based on Hydration Design
1
作者 Wenjing LIU Ning LIAO Yawei LI 《China's Refractories》 CAS 2024年第3期22-29,共8页
The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spi... The lamellar hydrates of CAC were designed with the introduction of nano CaCO_(3)or Mg-Al hydrotalcite(M-A-H),and the effects on the green strength,pore structures,and high-temperature fracture behavior of alumina-spinel castables were investigated.The results show that nano CaCO_(3)or M-A-H stimulates rapidly the hydration of CAC and the formation of lamellar C_(4)AcH_(11)or coexistence of C_(2)AH_(8)and C_(4)AcH_(11)at 25℃.The formation of lamellar hydrates can contribute to a more complicated pore structure,especially in the range of 400-2000 nm.Meanwhile,the incorporation of well-distributed CaO or MgO sources from nano CaCO_(3)or M-A-H also regulates the distribution of CA_(6)and spinel(pre-formed and in-situ).Consequently,the optimized microstructure and complicated pore structure can induce the deflection and bridging of cracks,thus facilitating the consumption of fracture energy and enhancing the resistance to thermal stress damage. 展开更多
关键词 alumina-spinel castables lamellar hydrates pore structure high-temperature wedge splitting test fracture behavior
下载PDF
Relationship between Natural Fracture and Structural Style and its Implication for Tight Gas Enrichment:A Case Study of Deep Ahe Formation in the Dibei–Tuzi Area,Kuqa Depression
2
作者 XIA Lu XI Kelai +6 位作者 YANG Xianzhang HAN Zhanghua XU Zhenping ZHOU Lu YU Guoding WANG Daoshen WANG Weiyu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第4期1086-1110,共25页
The deep Lower Jurassic Ahe Formation(J_(1a))in the Dibei–Tuzi area of the Kuqa Depression has not been extensively explored because of the complex distribution of fractures.A study was conducted to investigate the r... The deep Lower Jurassic Ahe Formation(J_(1a))in the Dibei–Tuzi area of the Kuqa Depression has not been extensively explored because of the complex distribution of fractures.A study was conducted to investigate the relationship between the natural fracture distribution and structural style.The J_(1a)fractures in this area were mainly high-angle shear fractures.A backward thrust structure(BTS)is favorable for gas migration and accumulation,probably because natural fractures are more developed in the middle and upper parts of a thick competent layer.The opposing thrust structure(OTS)was strongly compressed,and the natural fractures in the middle and lower parts of the thick competent layer around the fault were more intense.The vertical fracture distribution in the thick competent layers of an imbricate-thrust structure(ITS)differs from that of BTS and OTS.The intensity of the fractures in the ITS anticline is similar to that in the BTS.Fracture density in monoclinic strata in a ITS is controlled by faulting.Overall,the structural style controls the configuration of faults and anticlines,and the stress on the competent layers,which significantly affects deep gas reservoir fractures.The enrichment of deep tight sandstone gas is likely controlled by two closely spaced faults and a fault-related anticline. 展开更多
关键词 fracture distribution structural style deep tight sandstone electrical image logging Kuqa Depression Tarim Basin
下载PDF
Transition of plasticity and fracture mode of Zr-Al-Ni-Cu bulk metallic glasses with network structures 被引量:1
3
作者 蔡安辉 丁大伟 +4 位作者 安伟科 周果君 罗云 李江鸿 彭勇宜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2617-2623,共7页
Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etch... Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed. 展开更多
关键词 bulk metallic glass PLASTICITY fracture mode network structure
下载PDF
Geological characteristics and models of fault-foldfracture body in deep tight sandstone of the second member of Upper Triassic Xujiahe Formation in Xinchang structural belt of Sichuan Basin,SW China 被引量:1
4
作者 LIU Junlong LIU Zhongqun +8 位作者 LIU Zhenfeng LIU Yali SHEN Baojian XIAO Kaihua BI Youyi WANG Xiaowen WANG Ail FAN Lingxiao LI Jitongl 《Petroleum Exploration and Development》 SCIE 2023年第3期603-614,共12页
In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot... In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China. 展开更多
关键词 fault-fold-fracture body fracture control factor genetic characteristics geological model deep layer tight sandstone Xinchang structural belt Upper Triassic Xujiahe Formation Sichuan Basin
下载PDF
Combine S-N curve and fracture mechanics for fatigue life analysis of welded structures 被引量:8
5
作者 Wei Guoqian Odsuren Ochbileg +1 位作者 Yue Xudong Dang Zhang 《China Welding》 EI CAS 2019年第4期39-45,共7页
Based on the evolution of fatigue cracks in welded structures,the fatigue life of welded structures was defined as the sum of the crack initiation life Ni and the crack propagation life Np.Correspondingly,a fatigue-li... Based on the evolution of fatigue cracks in welded structures,the fatigue life of welded structures was defined as the sum of the crack initiation life Ni and the crack propagation life Np.Correspondingly,a fatigue-life analysis method combining S-N curves and fracture mechanics theory was proposed.The equivalent structural stress method and the lower 99%boundary of the master S-N curve were used to evaluate Ni,and cracks at the end of the initiation stage were considered as semi-elliptical surface cracks.Moreover,Paris equation and the stress intensity factor range of the cracks were used to evaluate Np.Furthermore,the fatigue test results obtained from the running girder of cranes were used as a reference for comparison and verification of the results.The results revealed that the equivalent structural stress is a good indicator for the crack initiation behavior of complex welded structures.In addition,the predicted fatigue life corresponded closely to the testing life. 展开更多
关键词 WELDED structures fatigue life EQUIVALENT structural stress S-N CURVE fracture MECHANICS
下载PDF
Yielding and fracture behaviors of coarse-grain/ultrafine-grain heterogeneous-structured copper with transitional interface 被引量:7
6
作者 Yan-fei WANG Ming-sai WANG +3 位作者 Kun YIN Ai-hui HUANG Yu-sheng LI Chong-xiang HUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第3期588-594,共7页
Heterogeneous-structured Cu samples composed of coarse-grained(CG) and ultrafine-grained(UFG) domains with a transitional interface were fabricated by friction stir processing, in order to investigate the effect of in... Heterogeneous-structured Cu samples composed of coarse-grained(CG) and ultrafine-grained(UFG) domains with a transitional interface were fabricated by friction stir processing, in order to investigate the effect of interface constraint on the yielding and fracture behaviors. Tensile test revealed that the synergetic strengthening induced by elastic/plastic interaction between incompatible domains increases with increasing the area of constraint interface. The strain distribution near interface and the fracture morphology were characterized using digital image correlation technique and scanning electron microscopy, respectively. Fracture dimples preferentially formed at the interface, possibly due to extremely high triaxial stress and strain accumulation near the interface. Surprisingly, the CG domain was fractured by pure shear instead of the expected voids growth caused by tensile stress. 展开更多
关键词 heterogeneous structure INTERFACE constraint synergetic strengthening fracture
下载PDF
The transient fracture behavior for a functionally graded layered structure subjected to an in-plane impact load 被引量:5
7
作者 Licheng Guo Linzhi Wu +1 位作者 Yuguo Sun Li Ma 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第3期257-266,共10页
The transient fracture behavior of a functionally graded layered structure subjected to an in-plane impact load is investigated. The studied structure is composed of two homogeneous layers and a functionally gradedint... The transient fracture behavior of a functionally graded layered structure subjected to an in-plane impact load is investigated. The studied structure is composed of two homogeneous layers and a functionally gradedinterlayer with a crack perpendicular to the boundaries. The impact load is applied on the face of the crack. Fourier transform and Laplace transform methods are used to formulate the present problem in terms of a singular integral equation in Laplace transform domain. Considering variations of parameters such as the nonhomogeneity constant, the thickness ratio and the crack length, the dynamic stress intensity factors (DSIFs) in time domain are studied and some meaningful conclusions are obtained. 展开更多
关键词 Transient fracture behavior Functionallygraded layered structure Dynamic stress intensity factors
下载PDF
Using structure restoration maps to comprehensively identify potential faults and fractures in compressional structures 被引量:5
8
作者 欧成华 陈伟 李朝纯 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期677-684,共8页
Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished direct... Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished directly from seismic profile of the complex structures is still an unanswered problem. Based on the compressional structural geometry and kinematics theories as well as the structural interpretation from seismic data, a set of techniques is established for the identification of potential faults and fractures in compressional structures. Firstly, three-dimensional(3D) patterns and characteristics of the faults directly interpreted from seismic profile were illustrated by 3D structural model. Then, the unfolding index maps, the principal structural curvature maps, and tectonic stress field maps were obtained from structural restoration. Moreover, potential faults and fractures in compressional structures were quantitatively identified relying on comprehensive analysis of these three maps. Successful identification of the potential faults and fractures in Mishrif limestone formation and in Asmari dolomite formation of Buzurgan anticline in Iraq demonstrates the applicability and reliability of these techniques. 展开更多
关键词 potential fault and fracture comprehensive identification structure restoration maps 3D structural modeling compressional structures
下载PDF
Structure and production fluid flow pattern of post-fracturing high-rank coal reservoir in Southern Qinshui Basin 被引量:4
9
作者 刘世奇 桑树勋 +2 位作者 朱启朋 刘会虎 高贺凤 《Journal of Central South University》 SCIE EI CAS 2014年第10期3970-3982,共13页
Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reser... Field geological work, field engineering monitoring, laboratory experiments and numerical simulation were used to study the development characteristics of pore-fracture system and hydraulic fracture of No.3 coal reservoir in Southern Qinshui Basin. Flow patterns of methane and water in pore-fracture system and hydraulic fracture were discussed by using limit method and average method. Based on the structure model and flow pattern of post-fracturing high-rank coal reservoir, flow patterns of methane and water were established. Results show that seepage pattern of methane in pore-fracture system is linked with pore diameter, fracture width, coal bed pressure and flow velocity. While in hydraulic fracture, it is controlled by fracture height, pressure and flow velocity. Seepage pattern of water in pore-fracture system is linked with pore diameter, fracture width and flow velocity. While in hydraulic fracture, it is controlled by fracture height and flow velocity. Pores and fractures in different sizes are linked up by ultramicroscopic fissures, micro-fissures and hydraulic fracture. In post-fracturing high-rank coal reservoir, methane has level-three flow and gets through triple medium to the wellbore; and water passes mainly through double medium to the wellbore which is level-two flow. 展开更多
关键词 flow pattern structure model high-rank coal reservoir hydraulic fracture Southern Qinshui Basin
下载PDF
Unlocking the potentials of gel conformance for water shutoff in fractured reservoirs: Favorable attributes of the double network gel for enhancing oil recovery
10
作者 Qian-Hui Wu Ji-Jiang Ge +1 位作者 Lei Ding Gui-Cai Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1005-1017,共13页
The double-network prepared with an in-situ monomer gel and a fast-crosslinked Cr(III) gel is introduced to develop a thixotropic and high-strength gel (THSG), which is found to have many advantages over the tradition... The double-network prepared with an in-situ monomer gel and a fast-crosslinked Cr(III) gel is introduced to develop a thixotropic and high-strength gel (THSG), which is found to have many advantages over the traditional gels. The THSG gel demonstrates remarkable thermal stability, and no syneresis is observed after 12 months with high salinity brine (95,500 mg/L). Moreover, the SEM and XRD results indicate that the gel is intercalated into the lamellar structures of Na-MMT, where the gel can form a uniform and compact structure. In addition, the THSG gel has an excellent swelling behavior, even in the high salinity brine. In the slim tube experiments, the THSG gel exhibits high rupture pressure and improves blocking capacity after being ruptured. The core flooding results show that a layer of gel filter cake is formed on the face of the fracture, which may be promoted by a high matrix permeability, a small aperture fracture, and a high injection rate. After the gel treatment, the fracture can be completely blocked by the THSG gel. It is found that a high incremental oil recovery (65.3%) can be achieved when the fracture was completely blocked, compared to 40.2% if the gel is ruptured. Although the swelling of ruptured gel can improve oil recovery, part of the injected brine may be channeled through the gel-filled fractures, resulting in a decrease in the sweep efficiency. Therefore, the improved blocking ability by gel swelling (e.g., in fresh water) may be less efficient to contribute to an enhancement of oil recovery. It is also found that the pressure gradient and residual resistance factor to water (Frrw) are higher if the matrix is less permeable, indicating that the fractured reservoir with lower matrix permeability may require a higher gel strength for treatment. The findings of this study may provide novel insights on designing robust double network gels for water shutoff in fractured reservoirs. 展开更多
关键词 Double network structure Gel swelling Rupture pressure fractured core Oil recovery factor
下载PDF
Fracture behavior of lamellar structure in Ti-48Al-2Mn-2Nb alloy produced by centrifugal spray deposition 被引量:1
11
作者 陈文哲 钱匡武 顾海澄 《中国有色金属学会会刊:英文版》 CSCD 2000年第5期585-589,共5页
The effects of lamellar structure on deformation and fracture behavior in a Ti 48Al 2Mn 2Nb alloy produced by centrifugal spray deposition(CSD) were investigated. The deformation and fracture of samples after tensile ... The effects of lamellar structure on deformation and fracture behavior in a Ti 48Al 2Mn 2Nb alloy produced by centrifugal spray deposition(CSD) were investigated. The deformation and fracture of samples after tensile and compressive tests were examined in a scanning electron microscope (SEM). The in situ tensile testing was further carried out in a SEM and the crack growth path of samples was observed. The result shows that there is a remarkable effect of lamellar structure of CSD TiAl alloy on its deformation and fracture process. Especially, the main crack extension is dependent on the lamellar direction relative to tensile loading axis. SEM observations indicate that there is a shielding toughening effect of lamellar structure on fracture in CSD samples, such as, crack deflection, crack path tortuousity, and crack branching, etc. Moreover, the crack growth path shows that the main crack grows tortuously and uncontinuously by ligaments bridging many microcracks in front of crack tip. The effect mechanism of microstructure on deformation and fracture process is discussed.[ 展开更多
关键词 Ti 48Al 2Mn 2Nb CENTRIFUGAL SPRAY deposition(CSD) LAMELLAR structure deformation fracture
下载PDF
Revisiting anisotropy in the tensile and fracture behavior of cold-rolled316L stainless steel with heterogeneous nano-lamellar structures 被引量:2
12
作者 Zesheng You Huangliu Fu +2 位作者 Shoudao Qu Weikang Bao Lei Lu 《Nano Materials Science》 CAS 2020年第1期72-79,共8页
We produced a 316 L stainless steel with heterogeneous nanometer-thick lamellar structures by severe cold-rolling at room temperature,and conducted micro-scale tensile tests in different orientations to evaluate both ... We produced a 316 L stainless steel with heterogeneous nanometer-thick lamellar structures by severe cold-rolling at room temperature,and conducted micro-scale tensile tests in different orientations to evaluate both the inplane(parallel to the nano-lamellae)and out-of-plane(normal and 45inclined to the nano-lamellae)mechanical anisotropy.The parallel orientation demonstrates the greatest tensile strength while the inclined orientation exhibits the least strength.The tensile tests in normal and inclined directions also indicate significant transient elastic-plastic response due to the strain path change.Fractographic examination demonstrates that the specimen fails in the normal direction by premature micro-void nucleation and growth,which restricts its tensile strength;however,we identified zig-zag cracking associated with lamellar shear cracking in the inclined direction. 展开更多
关键词 HETEROGENEOUS NANO-LAMELLAR structure Mechanical ANISOTROPY fracture behavior SPECIMEN size EFFECT Strain path EFFECT
下载PDF
Structural failure mechanism and strengthening method of fracture plugging zone for lost circulation control in deep naturally fractured reservoirs 被引量:3
13
作者 XU Chengyuan YAN Xiaopeng +2 位作者 KANG Yili YOU Lijun ZHANG Jingyi 《Petroleum Exploration and Development》 2020年第2期430-440,共11页
Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failu... Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failure pattern of plugging zone is developed to reveal the plugging zone failure mechanisms in deep, high temperature, high pressure, and high in-situ stress environment. Based on the fracture plugging zone strength model, key performance parameters are determined for the optimal selection of loss control material(LCM). Laboratory fracture plugging experiments with new LCM are carried out to evaluate the effect of the key performance parameters of LCM on fracture plugging quality. LCM selection strategy for fractured reservoirs is developed. The results show that the force chain formed by LCMs determines the pressure stabilization of macro-scale fracture plugging zone. Friction failure and shear failure are the two major failure patterns of fracture plugging zone. The strength of force chain depends on the performance of micro-scale LCM, and the LCM key performance parameters include particle size distribution, fiber aspect ratio, friction coefficient, compressive strength, soluble ability and high temperature resistance. Results of lab experiments and field test show that lost circulation control quality can be effectively improved with the optimal material selection based on the extracted key performance parameters of LCMs. 展开更多
关键词 deep layer fractured reservoir lost circulation fracture plugging zone multi-scale structure strength and stability loss control material
下载PDF
Estimation of Fracture Geometry Parameters and Characterization of Rock Mass Structure for the Beishan Area,China 被引量:1
14
作者 WEI Xiang GUO Ying +4 位作者 CHENG Hanlie WEI Jianfei ZHANG Linlin HUO Liang HOU Zhenkun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第5期1381-1392,共12页
The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,... The accurate estimation of fracture geometry parameters and the characterization of rock mass structure are two important topics in the geological disposal system of high-level radioactive waste(HLW).The Beishan area,as the current preselected area for China’s HLW disposal,has three subareas considered to be the key survey area at the stage of site selection.In this paper,a comprehensive survey method conducted on the outcrop is developed to estimate fracture geometry parameters.Results show that fracture occurrence obeys a Fisher distribution,fracture trace length obeys a normal distribution,and the distribution of spacing obeys a negative exponential distribution.An evaluation index,Rock Mass Structure Rating(RMSR),is proposed to characterize rock mass structure for the three subareas.The results show that the Xinchang area is more suitable to act as China’s HLW disposal repository site.At the same time,the index can also be applied to characterize surface rock mass structure and rock mass integrity at the site selection phase of HLW disposal. 展开更多
关键词 fracture geometry parameters rock mass structure high-level radioactive waste disposal RMSR Beishan area
下载PDF
Three-dimensional physical simulation and optimization of water injection of a multi-well fractured-vuggy unit 被引量:6
15
作者 Ji-Rui HOU Ze-Yu Zheng +4 位作者 Zhao-Jie Song Min LUO Hai-Bo Li Li Zhang Deng-Yu Yuan 《Petroleum Science》 SCIE CAS CSCD 2016年第2期259-271,共13页
With complex fractured-vuggy heterogeneous structures, water has to be injected to facilitate oil pro- duction. However, the effect of different water injection modes on oil recovery varies. The limitation of existing... With complex fractured-vuggy heterogeneous structures, water has to be injected to facilitate oil pro- duction. However, the effect of different water injection modes on oil recovery varies. The limitation of existing numerical simulation methods in representing fractured- vuggy carbonate reservoirs makes numerical simulation difficult to characterize the fluid flow in these reservoirs. In this paper, based on a geological example unit in the Tahe Oilfield, a three-dimensional physical model was designed and constructed to simulate fluid flow in a fractured-vuggy reservoir according to similarity criteria. The model was validated by simulating a bottom water drive reservoir, and then subsequent water injection modes were optimized. These were continuous (constant rate), intermittent, and pulsed injection of water. Experimental results reveal that due to the unbalanced formation pressure caused by pulsed water injection, the swept volume was expanded and consequently the highest oil recovery increment was achieved. Similar to continuous water injection, intermit- tent injection was influenced by factors including the connectivity of the fractured-vuggy reservoir, well depth, and the injection-production relationship, which led to a relative low oil recovery. This study may provide a constructive guide to field production and for the devel- opment of the commercial numerical models specialized for fractured-vuggy carbonate reservoirs. 展开更多
关键词 Multi-well fractured-vuggy unit Three-dimensional physical model Similarity criteria Bottom water drive. Optimization of water injection mode
下载PDF
Effect of stress on fracture development in the Asmari reservoir in the Zagros Thrust Belt
16
作者 Ghasem Aghli Babak Aminshahidy +3 位作者 Hem Bahadur Motra Ardavan Darkhal Farshad Sadeghpour Mehdi Ostadhassan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4491-4503,共13页
Development and production from fractured reservoirs require extensive knowledge about the reservoir structures and in situ stress regimes.For this,this paper investigates fractures and the parameters(aperture and den... Development and production from fractured reservoirs require extensive knowledge about the reservoir structures and in situ stress regimes.For this,this paper investigates fractures and the parameters(aperture and density)through a combination of wellbore data and geomechanical laboratory testing in three separate wells in the Asmari reservoir,Zagros Belt,Iran.The Asmari reservoir(Oligo-Miocene)consists mainly of calcitic and dolomitic rocks in depths of 2000e3000 m.Based on the observation of features in several wellbores,the orientation and magnitude of the in situ stresses along with their influence on reservoir-scale geological structures and neotectonics were determined.The study identifies two regional tectonic fracture settings in the reservoir:one set associated with longitudinal and diagonal wrinkling,and the other related to faulting.The former,which is mainly of open fractures with a large aperture,is dominant and generally oriented in the N45°-90°W direction while the latter is obliquely oriented relative to the bedding and characterized by N45°-90°E.The largest aperture is found in open fractures that are longitudinal and developed in the dolomitic zones within a complex stress regime.Moreover,analysis of drilling-induced fractures(DIFs)and borehole breakouts(BBs)from the image logs revealed that the maximum horizontal stress(SHmax)orientation in these three wells is consistent with the NE-SW regional trend of the SHmax(maximum principal horizontal stress)in the Zagros Belt.Likewise,the stress magnitude obtained from geomechanical testing and poroelastic equations confirmed a variation in stress regime from normal to reverse,which changes in regard to active faults in the study area.Finally,a relationship between the development degree of open fractures and in situ stress regime was found.This means that in areas where the stress regime is complex and reverse,fractures would exhibit higher density,dip angle,and larger apertures. 展开更多
关键词 fracturES Image logs In situ stress structural analysis Poroelastic equations
下载PDF
Damage degradation mechanism and macro-meso structural response of mudstone after water wetting
17
作者 SHAO Zhixin SONG Yanqi +3 位作者 ZHENG Junjie SHEN Fuxin LIU Chuanpeng YANG Juntao 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2825-2843,共19页
The predominant presence of weak interlayers primarily composed of mudstone renders them highly susceptible to a reduction in bearing capacity due to the water-rock weakening effect,significantly impacting the safety ... The predominant presence of weak interlayers primarily composed of mudstone renders them highly susceptible to a reduction in bearing capacity due to the water-rock weakening effect,significantly impacting the safety of open-pit mining operations.This study focuses on the weak mudstone layers within open-pit mine slopes.The mineral composition of mudstone and the microstructure evolution characteristics before and after water wetting were analyzed by X-ray diffraction(XRD)and scanning electron microscope(SEM).The meso-structure and parameter variation characteristics of mudstone interior space after water-rock interaction were quantified by computed tomography scanning test,and the damage variable characterization method was proposed.Additionally,according to the uniaxial compression test,the degradation characteristics of the macroscopic mechanical behavior of mudstone under different water wetting time were explored,and the elastic modulus and strength attenuation model of mudstone based on mesoscopic damage were established.Finally,building upon the macro-meso structural response characteristics of mudstone,an exploration of the failure characteristics and deterioration mechanism under the influence of water-rock interactions was undertaken.The results show that the water-rock interaction makes the internal defects of mudstone gradually develop and form a fracture network structure,which eventually leads to the deterioration of its macroscopic mechanical properties.The porosity,fractal dimension and damage characteristics of mudstone show an exponential trend with the increase of water wetting time.Moreover,the deterioration mechanism of mudstone after water wetting are postulated to encompass factors such as the hydrophilicity of mineral molecular structures,hydration stress and expansion effects on clay particles,as well as the spatial distribution of microcracks and the phenomenon of fracture adsorption.The outcomes of this research endeavor aim to provide certain reference value for further understanding the water-rock interaction and stability control of mudstone slope. 展开更多
关键词 Moisture absorption of mudstone Computed tomography scanning test fracture structure evolution Macro-meso structural response Deterioration mechanism
下载PDF
Fracture behavior and mechanism of highly fragmented steel cylindrical shell under explosive loading
18
作者 Kang Wang Peng Chen +5 位作者 Xingyun Sun Yufeng Liu Jiayu Meng Xiaoyuan Li Xiongwei Zheng Chuan Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期122-132,共11页
An in-depth understanding of the fracture behavior and mechanism of metallic shells under internal explosive loading can help develop material designs for warheads and regulate the quantity and mass distribution of th... An in-depth understanding of the fracture behavior and mechanism of metallic shells under internal explosive loading can help develop material designs for warheads and regulate the quantity and mass distribution of the fragments formed.This study investigated the fragmentation performance of a new high-carbon silicon-manganese(HCSiMn)steel cylindrical shell through fragment recovery experiments.Compared with the conventional 45Cr steel shell,the number of small mass fragments produced by the HCSi Mn steel shell was significantly increased with a scale parameter of 0.57 g fitted by the Weibull distribution model.The fragmentation process of the HCSi Mn shell exhibited more brittle tensile fracture characteristics,with the microcrack damage zone on the outer surface being the direct cause of its high fragmentation.On the one hand,the doping of alloy elements resulted in grain refinement by forming metallographic structure of tempered sorbite,so that microscopic intergranular fracture reduces the characteristic mass of the fragments;on the other hand,the distribution of alloy carbides can exert a"pinning"effect on the substrate grains,causing more initial cracks to form and propagate along the brittle carbides,further improving the shell fragmentation.Although the killing power radius for light armored vehicles was slightly reduced by about 6%,the dense killing radius of HCSiMn steel projectile against personnel can be significantly increased by about 26%based on theoretical assessment.These results provided an experimental basis for high fragmentation warhead design,and to some extent,revealed the correlation mechanism between metallographic structure and shell fragmentation. 展开更多
关键词 Projectile fragmentation Fragment mass distribution fracture mode Metallographic structure Damage power
下载PDF
Efficient placement technology of proppants based on structural stabilizers
19
作者 GUO Jianchun REN Shan +3 位作者 ZHANG Shaobin DIAO Su LU Yang ZHANG Tao 《Petroleum Exploration and Development》 SCIE 2024年第3期706-714,共9页
Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is de... Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is developed.Through microscopic structural observations and performance evaluations in indoor experiments,the mechanism of proppant placement under the action of the SS and the effects of the SS on proppant placement dimensions and fracture conductivity were elucidated.The SS facilitates the formation of robust fiber-proppant agglomerates by polymer,fiber,and quartz sand.Compared to bare proppants,these agglomerates exhibit reduced density,increased volume,and enlarged contact area with the fluid during settlement,leading to heightened buoyancy and drag forces,ultimately resulting in slower settling velocities and enhanced transportability into deeper regions of the fracture.Co-injecting the fiber and the SS alongside the proppant into the reservoir effectively reduces the fiber escape rate,increases the proppant volume in the slickwater,and boosts the proppant placement height,conveyance distance and fracture conductivity,while also decreasing the proppant backflow.Experimental results indicate an optimal SS mass fraction of 0.3%.The application of this SS in over 80 wells targeting tight gas,shale oil,and shale gas reservoirs has substantiated its strong adaptability and general suitability for meeting the production enhancement,cost reduction,and sand control requirements of such wells. 展开更多
关键词 hydraulic fracturing PROPPANT structure stabilizer placement mechanism CONDUCTIVITY proppant backflow rate
下载PDF
Experiments on nitrogen assisted gravity drainage in fractured-vuggy reservoirs 被引量:1
20
作者 WANG Jing JI Zemin +3 位作者 LIU Huiqing HUANG Yitao WANG Yishuang PU Yulong 《Petroleum Exploration and Development》 2019年第2期355-366,共12页
Visual models of fractured-vuggy reservoirs were designed and manufactured to conduct experiments of nitrogen assisted gravity drainage(NAGD). The impacts of flooding pattern, gas injection rate, well type, and displa... Visual models of fractured-vuggy reservoirs were designed and manufactured to conduct experiments of nitrogen assisted gravity drainage(NAGD). The impacts of flooding pattern, gas injection rate, well type, and displacement direction(vertical or horizontal) on development performances and remaining oil distribution were studied. The results show that during NAGD, the sweep scope is decided by the connections between producer and reservoir, and the local sweep efficiency is decided by fracture-vuggy configuration. The homogenous fractured reservoir has higher oil recovery, and the bigger the aperture of fracture is, the higher the recovery. The main regions of remaining oil due to poor connectivity and gas-oil gravity difference include blind fractures and vugs below the connected fractures, the bottom of vugs, and the narrow and low-angle fractures. The accumulation of remaining oil in the bottom of reservoir is easily formed and controlled by the connections between producers and reservoir. The higher the gas injection rate and the stronger the fracture heterogeneity, the earlier the gas channeling and the lower the oil recovery of the producer will be.Horizontal wells have the best development effect, so horizontal well can be applied in fractured-vuggy reservoirs without bottom water.Producers should be preferentially drilled at low structural position. Gas channeling firstly occurs in the producer at high structural position, and it should be shut in timely to improve the utilization of injected gas. 展开更多
关键词 fractured-vuggy RESERVOIR NAGD injection-production PATTERN development effect REMAINING OIL distribution
下载PDF
上一页 1 2 165 下一页 到第
使用帮助 返回顶部