Frequent rockburst disasters in deep-buried engineering projects severely impact construction. To explore the influence of axial stress on rockburst in deep-buried tunnels, large-scale true triaxial rockburst experime...Frequent rockburst disasters in deep-buried engineering projects severely impact construction. To explore the influence of axial stress on rockburst in deep-buried tunnels, large-scale true triaxial rockburst experiments were conducted under four different axial stress ratio conditions (ηt, axial loading stress/vertical loading stress) using a self-developed true triaxial loading device under the condition of "pre-loading before excavation". The influence of axial stress on the rockburst process and failure characteristics in deep tunnels was studied using a combination of real-time video monitoring, rockburst debris sieving, and acoustic emission monitoring. The results indicate: (1) all four specimens subjected to different axial stress ratio loading conditions exhibited three stages of macroscopic failure: small particle ejection, flake spalling, and large fragment ejection. Ultimately, "V"-shaped notches appeared on both sides of the tunnel. (2) The failure stress, fragment volume, and fragment size distribution of the rockburst specimens exhibited a clear two-stage failure characteristic with increasing axial stress ratio. In the lower axial stress ratio stage (ηt ≤ 0.7), the increase in the axial stress ratio enhances lateral confinement, thereby increasing the crack initiation strength of the surrounding rock, inhibiting crack formation and propagation, and thus suppressing damage to the surrounding rock of the tunnel. In the higher axial stress ratio stage (ηt > 0.7), the increase in axial stress ratio makes the Poisson effect of the surrounding rock more pronounced, promoting the generation and propagation of cracks along the tunnel axis direction, thereby promoting damage to the surrounding rock. (3) Based on the analysis of acoustic emission parameters (fracture properties), it can be concluded that in the lower axial stress ratio stage (ηt ≤ 0.7), an increase in the axial stress ratio leads to a higher proportion of shear fracture in rockburst damage. Conversely, in the higher axial stress ratio stage (ηt > 0.7), the increase in axial stress ratio gradually reduces the proportion of shear fracture in rockburst damage.展开更多
Polypropylene fibres and three sizes of steel fibres reinforced concrete are discussed. The total fibres content ranges from 0 4%-0 95% by volume of concrete. A four point bending test is adopted on the notched pris...Polypropylene fibres and three sizes of steel fibres reinforced concrete are discussed. The total fibres content ranges from 0 4%-0 95% by volume of concrete. A four point bending test is adopted on the notched prisms with the size of 100?mm×100?mm×500?mm to investigate the effect of hybrid fibres on crack arresting. The research results show that there is a positive synergy effect between large steel fibres and polypropylene fibres on the load bearing capacity in the small displacement range. But this synergy effect disappears in the large displacement range. The large and strong steel fibre is better than soft polypropylene fibre and small steel fibre in the aspect of energy absorption capacity in the large displacement range. The static usage limitation for the hybrid fibres concrete with “wide peak' or “multi peaks' load CMOD pattern should be carefully selected. The ultimate load bearing capacity and the crack width or CMOD at this load level should be jointly considered.展开更多
Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fract...Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fractured sandstone under different conditions of anchorage. The experimental results show that the strength and elastic modulus of fractured sandstone with different fracture angles are significantly lower than those of intact sandstone. Compared with the fractured samples without anchorage,the peak strength, residual strength, peak and ultimate axial strain of fractured sandstone under different anchorage increase by 64.5–320.0%, 62.8–493.0%, and 31.6–181.4%, respectively. The number of bolts and degree of pre-stress has certain effects on the peak strength and failure model of fractured sandstone. The peak strength of fractured sandstone under different anchorage increases to some extent, and the failure model of fractured sandstone also transforms from tensile failure to tensile–shear mixed failure with the number of bolts. The pre-stress can restrain the formation and evolution process of tensile cracks, delay the failure process of fractured sandstone under anchorage and impel the transformation of failure model from brittle failure to plastic failure.展开更多
Prediction of reservoir fracture is the key to explore fracture-type reservoir. When a shear-wave propagates in anisotropic media containing fracture,it splits into two polarized shear waves: fast shear wave and slow ...Prediction of reservoir fracture is the key to explore fracture-type reservoir. When a shear-wave propagates in anisotropic media containing fracture,it splits into two polarized shear waves: fast shear wave and slow shear wave. The polarization and time delay of the fast and slow shear wave can be used to predict the azimuth and density of fracture. The current identification method of fracture azimuth and fracture density is cross-correlation method. It is assumed that fast and slow shear waves were symmetrical wavelets after completely separating,and use the most similar characteristics of wavelets to identify fracture azimuth and density,but in the experiment the identification is poor in accuracy. Pearson correlation coefficient method is one of the methods for separating the fast wave and slow wave. This method is faster in calculating speed and better in noise immunity and resolution compared with the traditional cross-correlation method. Pearson correlation coefficient method is a non-linear problem,particle swarm optimization( PSO) is a good nonlinear global optimization method which converges fast and is easy to implement. In this study,PSO is combined with the Pearson correlation coefficient method to achieve identifying fracture property and improve the computational efficiency.展开更多
The present work focused on the Ni_3Al-based alloy with a high melting point. The aim of the research is to study the effect of withdrawal rate on the microstructures and mechanical properties of directionally solidif...The present work focused on the Ni_3Al-based alloy with a high melting point. The aim of the research is to study the effect of withdrawal rate on the microstructures and mechanical properties of directionally solidified Ni-25 Al alloy. Ni_3 Al intermetallics were prepared at different withdrawal rates by directional solidification(DS) in an electromagnetic cold crucible directional solidification furnace. The DS samples contain Ni_3 Al and Ni Al phases. The primary dendritic spacing(λ) decreases with the increasing of withdrawal rate(V), and the volume fraction of Ni Al phase increases as the withdrawal rate increases. Results of tensile tests show that ductility of DS samples is enhanced with a decrease in the withdrawal rate.展开更多
A semisolid slurry of AZ31 magnesium alloy was prepared by vibrating wavelike sloping plate process,and the semisolid die forging process,microstructures,and properties of the magnesium alloy mobile telephone shell we...A semisolid slurry of AZ31 magnesium alloy was prepared by vibrating wavelike sloping plate process,and the semisolid die forging process,microstructures,and properties of the magnesium alloy mobile telephone shell were investigated.The semisolid forging process was performed on a YA32-315 four-column universal hydraulic press.The microstructures were observed by optical microscopy,the hardness was analyzed with a model 450SVD Vickers hardometer,the mechanical properties was measured with a CMT5105 tensile test machine,and the fractograph of elongated specimens was observed by scanning electron microscopy (SEM).The results reveal that with the increase of die forging force,the microstructures of the product become fine and dense.A lower preheating temperature and a longer dwell time are favorable to the formation of fine and dense microstructures.The optimum process conditions of preparing mobile telephone shells with excellent surface quality and microstructures are a die forging force of 2000 kN,a die preheating temperature of 250℃,and a dwell time of 240 s.After solution treatment at 430℃ and aging at 220℃ for 8 h,the Vickers hardness is 61.7 and the ultimate tensile strength of the product is 193MPa.Tensile fractographs show the mixing mechanisms of quasi-cleavage fracture and ductile fracture.展开更多
In this work, the effects of reclaimed sand additions on the microstructure characteristics, mechanical properties and fracture behavior of furan no-bake resin sand have been investigated systematically within the tem...In this work, the effects of reclaimed sand additions on the microstructure characteristics, mechanical properties and fracture behavior of furan no-bake resin sand have been investigated systematically within the temperature range from 25 to 600 oC. The addition of 20%-100% reclaimed sand showed dramatic strength deterioration effect at the same temperature, which is associated with the formation of bonding bridges. Both the ultimate tensile strength(UTS) and compressive strength(CS) of the moulding sand initially increase with the increase of temperature, and then sharply decrease with the further increase of temperature, which is attributed to the thermal decomposition of furan resin. The addition amount of reclaimed sand has a remarkable effect on the room temperature fracture mode, i.e., with the addition of 0-20% reclaimed sand, the fracture mode was mainly cohesive fracture; the fracture mode converts to be mixture fracture mode as the addition of reclaimed sand increases to 35%-70%; further increasing the addition to 100% results in the fracture mode of typical adhesive fracture. The fracture surface of the bonding bridge changes from a semblance of cotton or holes to smooth with the increase of test temperature.展开更多
The inclusion parameters,fracture surface morphology and void growth characteristics of ten- sile and fracture toughness specimens of 2.25Cr-1Mo steels with and without rare-earth (RE)additions have been investigated ...The inclusion parameters,fracture surface morphology and void growth characteristics of ten- sile and fracture toughness specimens of 2.25Cr-1Mo steels with and without rare-earth (RE)additions have been investigated by quantitative metaltography(QTM),scanning elec- tron microscopy(SEM)and energy dispersive spectroscopy(EDS).There is a substantially higher density of inclusions in the RE-treated steel,which has lower values of fracture proper- ties including critical values of COD and J integral(δ_c and J_(IC)),fracture strain(ε_f) and Charpy V-notch energy(CVN).The fracture surface of the RE-treated steel comprises equiaxed dimples of diameters comparable with its inclusion spacing,whereas for the non-RE-treated steels,a wide range of dimple sizes is found with average diameter much smaller than the corresponding inclusion spacing.The investigation indicates that the lower values of fracture properties for the steel with RE at room temperature may be ascribed to its large content of RE-containing inclusions.展开更多
Bamboo is an eco-friendly material with light weight,high strength,short growth cycle and high sustainability,which is widely used in building structures.Engineered bamboo has further promoted the development of moder...Bamboo is an eco-friendly material with light weight,high strength,short growth cycle and high sustainability,which is widely used in building structures.Engineered bamboo has further promoted the development of modern bamboo structures due to its unrestricted size and shape.However,as a fiber-reinforced material,fracture damage,especially Mode I fracture damage,becomes the most likely damage mode of its structure,so Mode I fracture characteristics are an important subject in the research of mechanical properties of bamboo.This paper summarizes the current status of experimental research on the Mode I fracture properties of bamboo based on the three-point bending(TPB)method,the single-edge notched beam(SENB)method,the compact tension(CT)method and the double cantilever beam(DCB)method,compares the fracture toughness of different species of bamboo,analyzes the toughening mechanisms and fracture damage modes,discusses the applicability of different theoretical calculation methods,and makes suggestions for future research priorities,aiming to provide a reference for future research and engineering applications in related fields.展开更多
The application of fracture mechanics to the “Fitness For Purpose” assessment of the fracture properties of pipeline girth welds is generally essential for the safe operation of oil pipeline systems. Based on the a...The application of fracture mechanics to the “Fitness For Purpose” assessment of the fracture properties of pipeline girth welds is generally essential for the safe operation of oil pipeline systems. Based on the analysis of the fracture toughness requirements of the oil pipeline girth weld, a systematic study has been conducted on the fracture behavior of the API 5L X65 steel pipeline girth weld made by two welding materials. The critical COD values of the pipeline girth weld under the different temperatures are tested. In the paper other influential factors on fracture behavior are also discussed, such as the welding materials, the welding positions (flat welding, vertical welding, overhead welding), the welded joint area (weld, heat affected zone, fusion line and base metal) and the experiment temperature. The result shows that the welding material, the welded joint area and the experiment temperature have considerable influence on the fracture behavior of pipeline girth welds. It is also concluded that the effect of the welding position is related to the welding process. The study provides a scientific basis for the welding of oil pipelines.展开更多
Based on pre punching to hot rolled martensitic and bainitic dual phase steels with similar elongation and work hardening index (n), as well as similar thickness and hole expansion test using taper die, analysis of ...Based on pre punching to hot rolled martensitic and bainitic dual phase steels with similar elongation and work hardening index (n), as well as similar thickness and hole expansion test using taper die, analysis of the hole expansion rate indicated significant difference in their flanging performance. The results indicated that mechanical property was not the only major factor that influenced flanging. Further analysis of the hole border microstructure, work hardening condition, and fracture property showed that the fracture property of sheets was the major factor that influenced flanging performance.展开更多
A hot-mix asphalt(HMA) overlay is one of the primary strategy for rehabilitating existing HMA pavements and Portland cement concrete(PCC) pavements. The current design program, FAARFIELD, does not address reflective c...A hot-mix asphalt(HMA) overlay is one of the primary strategy for rehabilitating existing HMA pavements and Portland cement concrete(PCC) pavements. The current design program, FAARFIELD, does not address reflective cracking for asphalt-overlaid concrete pavements due to its mechanism complexity. The bending, shearing, and thermal are three crucial factors to successfully model reflective cracking. To implement this failure mode in flexible over rigid design procedure, a series of full-scale test pavements were constructed, instrumented, and tested in the condition of extreme cooling temperature at the FAA National Airport Pavement Test Facility. The purpose was to assess cooling effects on the propagation of reflection cracks for airport AC over PCC pavements. In preparation for reflective cracking phase VI test, the FAA is conducting laboratory experiment on field extracted hot mix asphalt(HMA) cores. In order to test these field HMA cores, the Texas Overlay Tester(OT) was customized to get data similar to the full-scale tests. This paper discusses finite element analysis on the full-scale testing, development of the customized Texas OT, and a laboratory testing suite using the customized Texas OT, including preliminary tests, instrumentation, experiment design, and test results. Data obtained from this research effort will be used to develop a rational testing procedure to simulate extreme cooling cycles through full-scale testing.展开更多
Wettability balance method was used to investigate the wetting performance of Sn Cu Ni-x Eu on Cu substrate, and the mechanical properties and the fracture morphology were studied.The results indicated that the additi...Wettability balance method was used to investigate the wetting performance of Sn Cu Ni-x Eu on Cu substrate, and the mechanical properties and the fracture morphology were studied.The results indicated that the addition of Eu could enhance the properties of solder and solder joints, with the increase of Eu content, tendency of first increase and then decrease could be found in the wetting time, wetting force and the mechanical properties of Sn Cu Ni-x Eu, and the optimal content was 0.039%.For Sn Cu Ni-0.039 Eu solder joints, the optimum mechanical properties could be found, and the amplitude increased was 20%, with the observation of the fracture morphology, it was found that small dimples could be seen, the toughness fracture for Sn Cu Ni and mixture fracture for Sn Cu Ni-0.039 Eu could be demonstrated.And thermal fatigue behavior of Sn Cu Ni solder joints could be enhanced obviously with the 0.039%Eu addition.展开更多
2D carbon fiber reinforced AZ91 D matrix composites(2D-C_f/AZ91 D composites) were fabricated by liquid–solid extrusion and vacuum pressure infiltration technique(LSEVI). In order to modify the interface between ...2D carbon fiber reinforced AZ91 D matrix composites(2D-C_f/AZ91 D composites) were fabricated by liquid–solid extrusion and vacuum pressure infiltration technique(LSEVI). In order to modify the interface between fibers and matrix and protect the fiber, pyrolytic carbon(Py C) coating was deposited on the surface of T700 carbon fiber by chemical vapor deposition(CVD). Microstructure observation of the composites revealed that the composites were well fabricated by LSEVI. The segregation of aluminum at fiber surface led to the formation of Mg_(17)Al_(12) precipitates at the interface. The aluminum improved the infiltration of the alloy and Py C coating protected the fibers effectively. The ultimate tensile strength of 2D-C_f/AZ91 D composites was about 400 MPa. The fracture process of 2D-C_f/AZ91 D composites was transverse fiber interface cracking–matrix transferring load–longitudinal fibers bearing load–longitudinal fibers breaking.展开更多
This study investigates the cryogenic tensile properties and fracture behavior of fiction stir welded and post-weld heat-treated joints of 32Mn-7Cr-1Mo-0.3N steel. Cryogenic brittle fracture, which occurred in the as-...This study investigates the cryogenic tensile properties and fracture behavior of fiction stir welded and post-weld heat-treated joints of 32Mn-7Cr-1Mo-0.3N steel. Cryogenic brittle fracture, which occurred in the as-welded joint, is related to the residual particles that contain tungsten in the joint band structure. Post-weld water toughening resulted in the cryogenic intergranular brittleness of the joint, which is related to the non-equilibrium segregation of solute atoms during the post-weld water toughening. Annealing at 55OC for 30rain can effectively inhibit the cryogenic intergranular brittleness of the post- weld water-toughened joint. The yield strength, ultimate tensile strength, and uniform elongation of the annealed joint are approximately 95%, 87%, and 94% of the corresponding data of the base metal.展开更多
The objective of this study was to investigate the mechanism of fracture properties modulated by microstructure in the myofibrillar protein(MP)and polysaccharides gel systems.Compare to the modified starch,the dietary...The objective of this study was to investigate the mechanism of fracture properties modulated by microstructure in the myofibrillar protein(MP)and polysaccharides gel systems.Compare to the modified starch,the dietary fiber significantly improved the fracture stress and reduced the fracture strain at same concentration.The treatment with 2%dietary fiber had the highest value of fracture stress and the lowest value of fracture strain,which were 259 g and 1.12 respectively.From the skeleton structure,the Raman spectroscopy result showed that dietary fiber addition significantly reduced the intensity at 2945 cm−1,which suggested that the aggregation of hydrophobic groups was improved.The SEM showed that the treatment with 2%dietary fiber had the highest fractal dimension value of 1.7772 and the lowest lacunary value of 0.258.From the filling structure,the paraffin section showed that the polysac-charides were just simply trapped in MP gel networks and formed numerous large volumes and no-elastic of cavities.The principal component analysis suggested that the compactness of three-dimensional gel networks determined fracture stress of composite gel.The no-no-elastic of cavities formed by modified starch and dietary fiber resulted in the reduction of fracture strain.These results would promote the development of innovative nutritional meat product formulation with satisfied textural property.展开更多
A green, easy to reproduce method to obtain thermally reduced graphene oxide (GO) is described, The only requirement is a heating source, like a hot plate, that can reach -225 ℃ without any special setup requiremen...A green, easy to reproduce method to obtain thermally reduced graphene oxide (GO) is described, The only requirement is a heating source, like a hot plate, that can reach -225 ℃ without any special setup requirements. Upon addition of graphene oxide, effective reduction could be achieved within 10 s. Starting flake size affects the yield of graphene, final structure and composition. A detailed characterization of the produced graphene using thermal analysis, spectroscopic methods, electron microscopy, X-ray diffraction and atomic force microscopy is presented. Application of the produced graphene as a filler to epoxy resin for mechanical reinforcement is also reported. Smaller flakes (Ds0 = 5.7 μm) showed improved ultimate tensile strength, fracture strain and plane strain fracture toughness compared to larger flakes (Ds0 = 47.9 μm) that showed negative effect. Both flake sizes showed a negligible effect on Young's modulus.展开更多
基金funded by the National Natural Science Foundation of China(Nos.42077228,52174085)。
文摘Frequent rockburst disasters in deep-buried engineering projects severely impact construction. To explore the influence of axial stress on rockburst in deep-buried tunnels, large-scale true triaxial rockburst experiments were conducted under four different axial stress ratio conditions (ηt, axial loading stress/vertical loading stress) using a self-developed true triaxial loading device under the condition of "pre-loading before excavation". The influence of axial stress on the rockburst process and failure characteristics in deep tunnels was studied using a combination of real-time video monitoring, rockburst debris sieving, and acoustic emission monitoring. The results indicate: (1) all four specimens subjected to different axial stress ratio loading conditions exhibited three stages of macroscopic failure: small particle ejection, flake spalling, and large fragment ejection. Ultimately, "V"-shaped notches appeared on both sides of the tunnel. (2) The failure stress, fragment volume, and fragment size distribution of the rockburst specimens exhibited a clear two-stage failure characteristic with increasing axial stress ratio. In the lower axial stress ratio stage (ηt ≤ 0.7), the increase in the axial stress ratio enhances lateral confinement, thereby increasing the crack initiation strength of the surrounding rock, inhibiting crack formation and propagation, and thus suppressing damage to the surrounding rock of the tunnel. In the higher axial stress ratio stage (ηt > 0.7), the increase in axial stress ratio makes the Poisson effect of the surrounding rock more pronounced, promoting the generation and propagation of cracks along the tunnel axis direction, thereby promoting damage to the surrounding rock. (3) Based on the analysis of acoustic emission parameters (fracture properties), it can be concluded that in the lower axial stress ratio stage (ηt ≤ 0.7), an increase in the axial stress ratio leads to a higher proportion of shear fracture in rockburst damage. Conversely, in the higher axial stress ratio stage (ηt > 0.7), the increase in axial stress ratio gradually reduces the proportion of shear fracture in rockburst damage.
文摘Polypropylene fibres and three sizes of steel fibres reinforced concrete are discussed. The total fibres content ranges from 0 4%-0 95% by volume of concrete. A four point bending test is adopted on the notched prisms with the size of 100?mm×100?mm×500?mm to investigate the effect of hybrid fibres on crack arresting. The research results show that there is a positive synergy effect between large steel fibres and polypropylene fibres on the load bearing capacity in the small displacement range. But this synergy effect disappears in the large displacement range. The large and strong steel fibre is better than soft polypropylene fibre and small steel fibre in the aspect of energy absorption capacity in the large displacement range. The static usage limitation for the hybrid fibres concrete with “wide peak' or “multi peaks' load CMOD pattern should be carefully selected. The ultimate load bearing capacity and the crack width or CMOD at this load level should be jointly considered.
基金Financial support for this work, provided by the National Natural Science Foundation of China (Nos. 50774082, 50804046 and 51109209)
文摘Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fractured sandstone under different conditions of anchorage. The experimental results show that the strength and elastic modulus of fractured sandstone with different fracture angles are significantly lower than those of intact sandstone. Compared with the fractured samples without anchorage,the peak strength, residual strength, peak and ultimate axial strain of fractured sandstone under different anchorage increase by 64.5–320.0%, 62.8–493.0%, and 31.6–181.4%, respectively. The number of bolts and degree of pre-stress has certain effects on the peak strength and failure model of fractured sandstone. The peak strength of fractured sandstone under different anchorage increases to some extent, and the failure model of fractured sandstone also transforms from tensile failure to tensile–shear mixed failure with the number of bolts. The pre-stress can restrain the formation and evolution process of tensile cracks, delay the failure process of fractured sandstone under anchorage and impel the transformation of failure model from brittle failure to plastic failure.
文摘Prediction of reservoir fracture is the key to explore fracture-type reservoir. When a shear-wave propagates in anisotropic media containing fracture,it splits into two polarized shear waves: fast shear wave and slow shear wave. The polarization and time delay of the fast and slow shear wave can be used to predict the azimuth and density of fracture. The current identification method of fracture azimuth and fracture density is cross-correlation method. It is assumed that fast and slow shear waves were symmetrical wavelets after completely separating,and use the most similar characteristics of wavelets to identify fracture azimuth and density,but in the experiment the identification is poor in accuracy. Pearson correlation coefficient method is one of the methods for separating the fast wave and slow wave. This method is faster in calculating speed and better in noise immunity and resolution compared with the traditional cross-correlation method. Pearson correlation coefficient method is a non-linear problem,particle swarm optimization( PSO) is a good nonlinear global optimization method which converges fast and is easy to implement. In this study,PSO is combined with the Pearson correlation coefficient method to achieve identifying fracture property and improve the computational efficiency.
基金financially supported by the National Natural Science Foundation of China(Grant No.51471062)
文摘The present work focused on the Ni_3Al-based alloy with a high melting point. The aim of the research is to study the effect of withdrawal rate on the microstructures and mechanical properties of directionally solidified Ni-25 Al alloy. Ni_3 Al intermetallics were prepared at different withdrawal rates by directional solidification(DS) in an electromagnetic cold crucible directional solidification furnace. The DS samples contain Ni_3 Al and Ni Al phases. The primary dendritic spacing(λ) decreases with the increasing of withdrawal rate(V), and the volume fraction of Ni Al phase increases as the withdrawal rate increases. Results of tensile tests show that ductility of DS samples is enhanced with a decrease in the withdrawal rate.
基金supported by the National Natural Science Foundation of China (Nos.51034002 and 50974038)the New Century Talents Support Program Project of the Ministry of Education of China (No.NCET-08-0097)
文摘A semisolid slurry of AZ31 magnesium alloy was prepared by vibrating wavelike sloping plate process,and the semisolid die forging process,microstructures,and properties of the magnesium alloy mobile telephone shell were investigated.The semisolid forging process was performed on a YA32-315 four-column universal hydraulic press.The microstructures were observed by optical microscopy,the hardness was analyzed with a model 450SVD Vickers hardometer,the mechanical properties was measured with a CMT5105 tensile test machine,and the fractograph of elongated specimens was observed by scanning electron microscopy (SEM).The results reveal that with the increase of die forging force,the microstructures of the product become fine and dense.A lower preheating temperature and a longer dwell time are favorable to the formation of fine and dense microstructures.The optimum process conditions of preparing mobile telephone shells with excellent surface quality and microstructures are a die forging force of 2000 kN,a die preheating temperature of 250℃,and a dwell time of 240 s.After solution treatment at 430℃ and aging at 220℃ for 8 h,the Vickers hardness is 61.7 and the ultimate tensile strength of the product is 193MPa.Tensile fractographs show the mixing mechanisms of quasi-cleavage fracture and ductile fracture.
基金sponsored by the National Natural Science Foundation of China(Nos.51275295 and 51201102)the Shanghai Rising–Star Program(No.14QB1403200)Research Fund for the Doctoral Program of Higher Education of China(Nos.20120073120011 and 20130073110052)
文摘In this work, the effects of reclaimed sand additions on the microstructure characteristics, mechanical properties and fracture behavior of furan no-bake resin sand have been investigated systematically within the temperature range from 25 to 600 oC. The addition of 20%-100% reclaimed sand showed dramatic strength deterioration effect at the same temperature, which is associated with the formation of bonding bridges. Both the ultimate tensile strength(UTS) and compressive strength(CS) of the moulding sand initially increase with the increase of temperature, and then sharply decrease with the further increase of temperature, which is attributed to the thermal decomposition of furan resin. The addition amount of reclaimed sand has a remarkable effect on the room temperature fracture mode, i.e., with the addition of 0-20% reclaimed sand, the fracture mode was mainly cohesive fracture; the fracture mode converts to be mixture fracture mode as the addition of reclaimed sand increases to 35%-70%; further increasing the addition to 100% results in the fracture mode of typical adhesive fracture. The fracture surface of the bonding bridge changes from a semblance of cotton or holes to smooth with the increase of test temperature.
文摘The inclusion parameters,fracture surface morphology and void growth characteristics of ten- sile and fracture toughness specimens of 2.25Cr-1Mo steels with and without rare-earth (RE)additions have been investigated by quantitative metaltography(QTM),scanning elec- tron microscopy(SEM)and energy dispersive spectroscopy(EDS).There is a substantially higher density of inclusions in the RE-treated steel,which has lower values of fracture proper- ties including critical values of COD and J integral(δ_c and J_(IC)),fracture strain(ε_f) and Charpy V-notch energy(CVN).The fracture surface of the RE-treated steel comprises equiaxed dimples of diameters comparable with its inclusion spacing,whereas for the non-RE-treated steels,a wide range of dimple sizes is found with average diameter much smaller than the corresponding inclusion spacing.The investigation indicates that the lower values of fracture properties for the steel with RE at room temperature may be ascribed to its large content of RE-containing inclusions.
基金This work was supported by the National Natural Science Foundation of China(Nos.51878354&51308301)the Natural Science Foundation of Jiangsu Province(Nos.BK20181402&BK20130978)+3 种基金333 Talent High-Level Project of Jiangsu ProvinceQinglan Project of Jiangsu Higher Education Institutionsand the Ministry of Housing and Urban-Rural Science Project of Jiangsu Province under Grant(No.2021ZD10)Any research results expressed in this paper are those of the writer(s)and do not necessarily reflect the views of the foundations.
文摘Bamboo is an eco-friendly material with light weight,high strength,short growth cycle and high sustainability,which is widely used in building structures.Engineered bamboo has further promoted the development of modern bamboo structures due to its unrestricted size and shape.However,as a fiber-reinforced material,fracture damage,especially Mode I fracture damage,becomes the most likely damage mode of its structure,so Mode I fracture characteristics are an important subject in the research of mechanical properties of bamboo.This paper summarizes the current status of experimental research on the Mode I fracture properties of bamboo based on the three-point bending(TPB)method,the single-edge notched beam(SENB)method,the compact tension(CT)method and the double cantilever beam(DCB)method,compares the fracture toughness of different species of bamboo,analyzes the toughening mechanisms and fracture damage modes,discusses the applicability of different theoretical calculation methods,and makes suggestions for future research priorities,aiming to provide a reference for future research and engineering applications in related fields.
文摘The application of fracture mechanics to the “Fitness For Purpose” assessment of the fracture properties of pipeline girth welds is generally essential for the safe operation of oil pipeline systems. Based on the analysis of the fracture toughness requirements of the oil pipeline girth weld, a systematic study has been conducted on the fracture behavior of the API 5L X65 steel pipeline girth weld made by two welding materials. The critical COD values of the pipeline girth weld under the different temperatures are tested. In the paper other influential factors on fracture behavior are also discussed, such as the welding materials, the welding positions (flat welding, vertical welding, overhead welding), the welded joint area (weld, heat affected zone, fusion line and base metal) and the experiment temperature. The result shows that the welding material, the welded joint area and the experiment temperature have considerable influence on the fracture behavior of pipeline girth welds. It is also concluded that the effect of the welding position is related to the welding process. The study provides a scientific basis for the welding of oil pipelines.
基金Sponsored by National Natural Science Foundation of China(51275003)
文摘Based on pre punching to hot rolled martensitic and bainitic dual phase steels with similar elongation and work hardening index (n), as well as similar thickness and hole expansion test using taper die, analysis of the hole expansion rate indicated significant difference in their flanging performance. The results indicated that mechanical property was not the only major factor that influenced flanging. Further analysis of the hole border microstructure, work hardening condition, and fracture property showed that the fracture property of sheets was the major factor that influenced flanging performance.
文摘A hot-mix asphalt(HMA) overlay is one of the primary strategy for rehabilitating existing HMA pavements and Portland cement concrete(PCC) pavements. The current design program, FAARFIELD, does not address reflective cracking for asphalt-overlaid concrete pavements due to its mechanism complexity. The bending, shearing, and thermal are three crucial factors to successfully model reflective cracking. To implement this failure mode in flexible over rigid design procedure, a series of full-scale test pavements were constructed, instrumented, and tested in the condition of extreme cooling temperature at the FAA National Airport Pavement Test Facility. The purpose was to assess cooling effects on the propagation of reflection cracks for airport AC over PCC pavements. In preparation for reflective cracking phase VI test, the FAA is conducting laboratory experiment on field extracted hot mix asphalt(HMA) cores. In order to test these field HMA cores, the Texas Overlay Tester(OT) was customized to get data similar to the full-scale tests. This paper discusses finite element analysis on the full-scale testing, development of the customized Texas OT, and a laboratory testing suite using the customized Texas OT, including preliminary tests, instrumentation, experiment design, and test results. Data obtained from this research effort will be used to develop a rational testing procedure to simulate extreme cooling cycles through full-scale testing.
基金Project supported by Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(12KJB460005)
文摘Wettability balance method was used to investigate the wetting performance of Sn Cu Ni-x Eu on Cu substrate, and the mechanical properties and the fracture morphology were studied.The results indicated that the addition of Eu could enhance the properties of solder and solder joints, with the increase of Eu content, tendency of first increase and then decrease could be found in the wetting time, wetting force and the mechanical properties of Sn Cu Ni-x Eu, and the optimal content was 0.039%.For Sn Cu Ni-0.039 Eu solder joints, the optimum mechanical properties could be found, and the amplitude increased was 20%, with the observation of the fracture morphology, it was found that small dimples could be seen, the toughness fracture for Sn Cu Ni and mixture fracture for Sn Cu Ni-0.039 Eu could be demonstrated.And thermal fatigue behavior of Sn Cu Ni solder joints could be enhanced obviously with the 0.039%Eu addition.
基金supported by the National Nature Science Foundation of China (Nos. 51472203, 51521061, 51575447 and 51432008)
文摘2D carbon fiber reinforced AZ91 D matrix composites(2D-C_f/AZ91 D composites) were fabricated by liquid–solid extrusion and vacuum pressure infiltration technique(LSEVI). In order to modify the interface between fibers and matrix and protect the fiber, pyrolytic carbon(Py C) coating was deposited on the surface of T700 carbon fiber by chemical vapor deposition(CVD). Microstructure observation of the composites revealed that the composites were well fabricated by LSEVI. The segregation of aluminum at fiber surface led to the formation of Mg_(17)Al_(12) precipitates at the interface. The aluminum improved the infiltration of the alloy and Py C coating protected the fibers effectively. The ultimate tensile strength of 2D-C_f/AZ91 D composites was about 400 MPa. The fracture process of 2D-C_f/AZ91 D composites was transverse fiber interface cracking–matrix transferring load–longitudinal fibers bearing load–longitudinal fibers breaking.
基金Financial support by State Key Lab of Advanced Welding and Joining,Harbin Institute of Technology
文摘This study investigates the cryogenic tensile properties and fracture behavior of fiction stir welded and post-weld heat-treated joints of 32Mn-7Cr-1Mo-0.3N steel. Cryogenic brittle fracture, which occurred in the as-welded joint, is related to the residual particles that contain tungsten in the joint band structure. Post-weld water toughening resulted in the cryogenic intergranular brittleness of the joint, which is related to the non-equilibrium segregation of solute atoms during the post-weld water toughening. Annealing at 55OC for 30rain can effectively inhibit the cryogenic intergranular brittleness of the post- weld water-toughened joint. The yield strength, ultimate tensile strength, and uniform elongation of the annealed joint are approximately 95%, 87%, and 94% of the corresponding data of the base metal.
基金Fundamental Research Funds for the Central Universities(KYZ201543)the National Natural Science Foundation of China(Grant No.31871822)Natural Science Foundation of Jiangsu Province(No.BK20210671 and BK20210674).
文摘The objective of this study was to investigate the mechanism of fracture properties modulated by microstructure in the myofibrillar protein(MP)and polysaccharides gel systems.Compare to the modified starch,the dietary fiber significantly improved the fracture stress and reduced the fracture strain at same concentration.The treatment with 2%dietary fiber had the highest value of fracture stress and the lowest value of fracture strain,which were 259 g and 1.12 respectively.From the skeleton structure,the Raman spectroscopy result showed that dietary fiber addition significantly reduced the intensity at 2945 cm−1,which suggested that the aggregation of hydrophobic groups was improved.The SEM showed that the treatment with 2%dietary fiber had the highest fractal dimension value of 1.7772 and the lowest lacunary value of 0.258.From the filling structure,the paraffin section showed that the polysac-charides were just simply trapped in MP gel networks and formed numerous large volumes and no-elastic of cavities.The principal component analysis suggested that the compactness of three-dimensional gel networks determined fracture stress of composite gel.The no-no-elastic of cavities formed by modified starch and dietary fiber resulted in the reduction of fracture strain.These results would promote the development of innovative nutritional meat product formulation with satisfied textural property.
基金generously supported by the Space Core Technology Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Science,ICT and Future Planning (No.2013M1A3A3A02042257)
文摘A green, easy to reproduce method to obtain thermally reduced graphene oxide (GO) is described, The only requirement is a heating source, like a hot plate, that can reach -225 ℃ without any special setup requirements. Upon addition of graphene oxide, effective reduction could be achieved within 10 s. Starting flake size affects the yield of graphene, final structure and composition. A detailed characterization of the produced graphene using thermal analysis, spectroscopic methods, electron microscopy, X-ray diffraction and atomic force microscopy is presented. Application of the produced graphene as a filler to epoxy resin for mechanical reinforcement is also reported. Smaller flakes (Ds0 = 5.7 μm) showed improved ultimate tensile strength, fracture strain and plane strain fracture toughness compared to larger flakes (Ds0 = 47.9 μm) that showed negative effect. Both flake sizes showed a negligible effect on Young's modulus.