Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and frag...Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments.展开更多
In plateau region of Yunnan Province, japonica rice-growing areas are characterized by high altitude, heavy rain in summer, low temperature and insuffi- cient accumulated temperature in grain-filling stage. In view of...In plateau region of Yunnan Province, japonica rice-growing areas are characterized by high altitude, heavy rain in summer, low temperature and insuffi- cient accumulated temperature in grain-filling stage. In view of the characteristics above, the breeding of japonica soft rice was carried out. In this paper, the yield and quality characteristics of japonica soft rice cultivars bred recently in Yunnan Province were analyzed. The results showed that there was no difference in milling quality, but there were great differences in chemical indexes between soft rice and japonica rice, such as amylose content. For example, in soft rice, the amylose con- tent was significantly lower, but the protein content, gel consistency and taste meter value were significantly higher compared with those in japonica rice. However, there was no significant difference in alkali digestion value between soft rice and japonica rice. The starch RVA profile characteristics of soft rice were significantly better than those of japonica rice. The RVA starch profile of soft rice showed higher maximum viscosity, lower minimum viscosity, higher breakdown value, lower final viscosity, lower setback value and shorter time to reach the maximum viscosity (P〈0.05, P〈 0.01). The analysis of yield and yield components showed that the yield of japonica soft rice was still lower than that of the control cultivar, which might be caused by weaker tillering capacity, less grains per panicle and lower 1 000-grain weight. In addition, the approaches to improve grain quality and yield of japonica soft rice were also discussed.展开更多
Utilizing the heterosis of indica/japonica hybrid rice(IJHR)is an effective way to further increase rice grain yield.Rational application of nitrogen(N)fertilizer plays a very important role in using the heterosis of ...Utilizing the heterosis of indica/japonica hybrid rice(IJHR)is an effective way to further increase rice grain yield.Rational application of nitrogen(N)fertilizer plays a very important role in using the heterosis of IJHR to achieve its great yield potential.However,the responses of the grain yield and N utilization of IJHR to N application rates and the underlying physiological mechanism remain elusive.The purpose of this study was to clarify these issues.Three rice cultivars currently used in rice production,an IJHR cultivar Yongyou 2640(YY2640),a japonica cultivar Lianjing 7(LJ-7)and an indica cultivar Yangdao 6(YD-6),were grown in the field with six N rates(0,100,200,300,400,and 500 kg ha^(-1))in 2018 and 2019.The results showed that with the increase in N application rates,the grain yield of each test cultivar increased at first and then decreased,and the highest grain yield was at the N rate of 400 kg ha^(-1)for YY2640,with a grain yield of 13.4 t ha^(-1),and at 300 kg ha^(-1)for LJ-7 and YD-6,with grain yields of 9.4–10.6 t ha^(-1).The grain yield and N use efficiency(NUE)of YY2640 were higher than those of LJ-7 or YD-6 at the same N rate,especially at the higher N rates.When compared with LJ-7 or YD-6,YY2640 exhibited better physiological traits,including greater root oxidation activity and leaf photosynthetic rate,higher cytokinin content in the roots and leaves,and more remobilization of assimilates from the stem to the grain during grain filling.The results suggest that IJHR could attain both higher grain yield and higher NUE than inbred rice at either low or high N application rates.Improved shoot and root traits of the IJHR contribute to its higher grain yield and NUE,and a higher content of cytokinins in the IJHR plants plays a vital role in their responses to N application rates and also benefits other physiological processes.展开更多
To create the japonica germplasm with long grain and fragrance,we edited GS3 and OsBADH2 of a japonica rice cultivar Chunjiang 151 by using CRISPR/Cas9 system for multiplex genome editing.10 long-grain fragrant japoni...To create the japonica germplasm with long grain and fragrance,we edited GS3 and OsBADH2 of a japonica rice cultivar Chunjiang 151 by using CRISPR/Cas9 system for multiplex genome editing.10 long-grain fragrant japonica rice plants without transgenic components were obtained.Compared with those of Chunjiang 151,the grain length,thousand-grain weight,and yield per plant of the edited line increased 12.20%,18.45%,and 8.31%,respectively.We created the fragrant japonica rice line with improved grain length and yield,which enriched the germplasm resource of japonica rice and provided reference for the improvement of rice quality.展开更多
[Objective] By investigating of change rule rice starch RVA profile properties and the influence of cold tolerance on rice quality,the aim was to provide scientific references to the breeding of new cold-tolerant japo...[Objective] By investigating of change rule rice starch RVA profile properties and the influence of cold tolerance on rice quality,the aim was to provide scientific references to the breeding of new cold-tolerant japonica rice varieties with high quality in the Yunnan plateau.[Method] Four cold-tolerant and five cold-sensitive japonica rice cultivars were grown at three locations with different altitudes in Yunnan plateau to investigate rice starch RVA profile characteristics.[Result] The results showed that with increasing altitude,the setback viscosity in cold-sensitive cultivars increased significantly,while the peak viscosity and breakdown viscosity decreased significantly.However,the peak viscosity and breakdown viscosity in cold-tolerant cultivars initially decreased and then gradually increased with rising altitude,whereas the setback viscosity initially increased and then decreased.[Conclusion] The starch RVA parameters of cold-tolerant cultivars were less sensitive to different environments than those of cold-sensitive cultivars.Cooking and eating quality of cold-tolerant cultivars had relatively stable trends with rising altitude,whereas cooking and eating quality of cold-sensitive cultivars had a trend toward inferior.展开更多
In this study, through vitro culturing anthers of 7 F1 progenies of early Japonica rice in cold region on medium with different Fe2+ contents, it was found that Fe2+ content generated greater impacts on the induction ...In this study, through vitro culturing anthers of 7 F1 progenies of early Japonica rice in cold region on medium with different Fe2+ contents, it was found that Fe2+ content generated greater impacts on the induction rate and green plantlet differentiation. The result demonstrated that if Fe2+ increased from 32 to 40 mg/kg, the induction rate of early Japonica rice anther culture in N6 culture media was more then 1.4 times higher than that in N6 culture media containing 5.6 mg/kg Fe2+. In this concentration range, the induction rate increased with the increase of Fe2+ content, while if the concentration was over this concentration range, the induction rate decreased with the increase of Fe2+, showing single peak distribution. When the Fe2+ was 40 mg/kg in differentiation medium, the differentiation rate decreased dramatically. The green plantlet differentiations of callus which were induced on culture media containing 32-40 mg/kg Fe2+ were different, when they were cultured on MS culture media, and 85.7% materials could increase green plantlet productivity to about 7.8%. Therefore, increasing Fe2+in induction media properly could increase anther culture efficiency of early Japonica rice in cold region.展开更多
[Objective] This study aimed to investigate the effects of different sowing dates and sites on starch RVA profile characteristics of different ecotypes of japonica rice. [Method] Five different ecotypes of japonica ri...[Objective] This study aimed to investigate the effects of different sowing dates and sites on starch RVA profile characteristics of different ecotypes of japonica rice. [Method] Five different ecotypes of japonica rice were sown at seven different dates in four rice planting regions in Jiangsu Province to analyze the differences in starch RVA profile parameters among different rice varieties. [Result] Among eight parameters of rice starch RVA profile, peak time exhibited no significant differences among different sites, while other seven parameters varied significantly or extremely significantly among different sites, sowing dates and varieties. Specifically, rice variety exerted the most significant effects on rice starch RVA profile parameters. Starch RVA profile characteristics varied significantly among different ecological conditions but exhibited no significant differences among different latitudes. To be specific, in different sites, peak viscosity (PKV), hot paste viscosity (HPV) and breakdown viscosity (BDV) demonstrated a descending order of Huai'an 〉 Suzhou 〉 Lianyungang 〉 Yangzhou. Cool paste viscosity (CPV) and consistence viscosity (CSV) were higher in the north than in the south; specifically, CPV and CSV were significantly higher in Lianyungang and Huai'an than in Yangzhou and Suzhou. Setback viscosity (SBV) showed an increasing trend with increasing latitude; specifically, SBV was significantly lower in Suzhou than in other three sites. Pasting temperature (PAT) and peak time (PET) changed slightly among different latitudes. With the postponing of sowing date, peak viscosity (PKV), hot paste viscosity (HPV), cool paste viscosity (CPV) and peak time (PET) showed a decreasing trend, setback viscosity (SBV) and consistence viscosity (CSV) increased, breakdown viscosity (BDV) increased first and then decreased, whereas pasting temperature (PAT) decreased first and then increased. Furthermore, rice starch RVA profile parameters showed the same variation trend with sowing date in different sites; early sowing within suitable sowing dates could effectively improve the parameters of rice starch RVA profile. However, different parameters exerted different variations among different sites and most parameters were higher in the north than in the south, which indicated that starch RVA profile parameters were significantly affected by sowing date in the north of Jiangsu Province. Among eight starch RVA profile parameters, setback viscosity exhibited the maximum variation coefficient, while peak time exhibited the minimum variation coefficient. Among five rice varieties, Nanjing 46 exhibited the highest peak viscosity and breakdown viscosity and the lowest setback viscosity and consistence viscosity, suggesting that Nanjing 46 had the most appropriate starch RVA profile characteristics and the best cooking and eating quality. Lianjing 4 exhibited relatively high peak viscosity and breakdown viscosity, and relatively low setback viscosity and consistence viscosity, suggesting that Lianjing 4 had good starch RVA profile characteristics. Different sowing dates and sites exerted significant effects on starch RVA profiles of different eco- types of japonica rice. Rice starch RVA profile characteristics varied significantly among different sites but exhibited no significant variations among different latitudes. In addition, starch RVA profile characteristics varied significantly among different sowing dates. Therefore, early sowing of the same variety was conducive to improving starch RVA profile characteristics in appropriate planting regions. [Conclusion] This study provided a theoretical basis for producing high-quality rice and improving the eating quality of rice in Jiangsu Province.展开更多
[Objective] The research aimed to map QTL for the sensitivity of the traits related outcrosssing of Japonica rice to exogenous GA3 and provide theoretical basis for breeding and improving the high-sensitivity sterile ...[Objective] The research aimed to map QTL for the sensitivity of the traits related outcrosssing of Japonica rice to exogenous GA3 and provide theoretical basis for breeding and improving the high-sensitivity sterile line.[Method] Taking Japonica rice Xiushui 79 and C bao and their recombinant inbred line population 260 lines as test materials,the sensitivity of 4 traits related outcrossing to Exogenous GA3 and their QTL mapping were studied by using composite interval mapping..[Result]Three QTLs,which cont...展开更多
[Objective] This study aimed to investigate the variation characteristics of Yunnan and Korean japonica rice quality under different environmental conditions in Yunnan Plateau. [Method] Ten Yunnan japonica rice variet...[Objective] This study aimed to investigate the variation characteristics of Yunnan and Korean japonica rice quality under different environmental conditions in Yunnan Plateau. [Method] Ten Yunnan japonica rice varieties and six Korean japonica rice varieties were selected to investigate the effects of ecological conditions on grain quality characteristics and starch RVA profile characteristic values of Yunnan and Korean japonica rice. [Result] The coefficient of variation of Yunnan and Korean japonica rice reached the maximum in setback viscosity (SBV). The coefficients of variation of brown rice length (BRL), chalkiness rate (CR), amylose content (AC), protein content (PC), alkali digestion value (ADV), final viscosity (FLV), setback viscosity (SBV) and peak time (PeT) of Yunnan japonica rice varieties were significantly higher than those of Korean japonica rice, while other grain quality characteristics were contrary. With the increasing altitudes, BRL, brown rice width (BRW), length-width ratio (L/W), whiteness (WH), AC, ADV, FLV and consistence viscosity (CTV) of Yunnan japonica rice and BRL, BRW, WH, PC, peak viscosity (PKV), hot viscosity (HTV) and breakdown viscosity (BDV) of Korean japonica rice were significantly reduced , while CR, PC, HTV and PeT of Yunnan japonica rice and L/W, AC, ADV and CTV of Korean japonica rice significantly increased, but CR of Korean japonica rice showed no significantly variation. PKV, BDV and pasting temperature (PaT) of Yunnan japonica rice and PaT of Korean japonica rice showed an upward trend after an initial drop with the increasing altitudes, while SBV of Yunnan japonica rice and FLV and PeT of Korean japonica rice were contrary. [Conclusion] This study provided theoretical basis for breeding of japonica rice in Yunnan Plateau.展开更多
Yunjing 29 bred by Institute of Food Crops of Yunnan Academy of Agricultural Sciences is a new conventional japonica rice variety with fragrant and sof rice, it was examined and approved by Yunnan Provincial Variety E...Yunjing 29 bred by Institute of Food Crops of Yunnan Academy of Agricultural Sciences is a new conventional japonica rice variety with fragrant and sof rice, it was examined and approved by Yunnan Provincial Variety Examination and Approval Committee in March of 2011. The variety is early-maturing, high-yield and good-quality, and has resistances to lodging, blast and bacterial leaf blight, its rice is sweet soft, goluptious and lucidus as well as not coarse when it is cold, so it is a good commodity. To further promote the popularization and cultivation of the variety, maintain its characteristics of high quality and high yield, and prevent commingling and degeneration, the purification and rejuvenation as well as breeding technology of high-quality seeds were proposed after continuous exploration and study.展开更多
[Objective] This study was conducted to construct a super-high yield population of Japnica rice in cold regions of North China and to explore its characteristics. [Method] The super rice variety Longjing 21 was select...[Objective] This study was conducted to construct a super-high yield population of Japnica rice in cold regions of North China and to explore its characteristics. [Method] The super rice variety Longjing 21 was selected as the experimental material. Different row spacing(two levels), plant spacing(three levels) and seedling number per hill(three levels) were designed in field trials. Then, the growth stages,dry matter accumulation, leaf area, yield and yield components of these different treatments were measured. [Result] Rice yield had significantly negative correlation with plant spacing and row spacing, but no significant correlation with seedling number per hill. Rice yield was mainly affected by plant spacing, and less affected by seedling number per hill. The best recommended specifications for plant spacing of super rice variety Longjing 21 were 24 cm for row spacing, 12 cm for plant spacing and five seedlings per hill, and the expected yield was 10 473.0 kg/hm^2.The increased number of total spikelets(4.5×108hm2or more) in populations was the major reason for high yield. Super-high yield populations had fewer tillers at the early growth stage and achieved the expected number of productive tillers at critical leaf-age(June 25), and tiller number peaked at jointing stage(July 6) and was about 1.2 times of the expected number. The percentage of productive tillers in total tillers of super-high yield population was more than 85% at heading stage. At middle growth stage(from jointing to heading stage), the dry matter accumulation, leaf area index(LAI) at heading stage, effective leaf area, spikelet number of population,spikelet number per leaf area unit(cm2), and culm-sheath weight per stem of super-high yield population were significantly higher than those of other populations.At late growth stage(from heading to maturity stage), the leaf area decreasing rate of super-high yield population was significantly smaller than that of other populations. At late growth stage(from heading to maturity stage), the leaf area decreasing rate, crop growth rate, net assimilation rate, biomass accumulation, number of filled grains per leaf area unit(cm^2) and grain weight per leaf area unit(cm^2) of high-yield population were significantly higher than those of other populations. Output and translocation of dry matter(weight per stem and sheath and total filling rate at maturity) from heading to milky stage of super-high yield population were significantly higher than those of other populations. [Conclusion] The characteristics of superhigh yield rice in cold region of North China are enriching the amount of actual filling of sink through improving photosynthetic efficiency from heading to maturity stage on the basis of enough panicle numbers.展开更多
[Objective] This study was conducted to screen japonica rice male sterile lines with good flowering characteristics under high temperature and summer drought. [Method] The flowering habits of 23 japonica male sterile ...[Objective] This study was conducted to screen japonica rice male sterile lines with good flowering characteristics under high temperature and summer drought. [Method] The flowering habits of 23 japonica male sterile lines, such as flowering peak, single-panicle flowering duration, single-plant flowering duration, en- closed glume rate, glume-opening angle, the distance between glumes, stigma exer- tion rate and sigma vitality, were compared with II-32A as a control under above weather condition. [Result] The flowering characteristics had significant difference a- mong the tested rice lines. Compared with the control, three japonica rice male ster- ile lines 35478A, 35489A and 35502A had better flowering traits, such as earlier flowering peak, longer single-panicle flowering duration, longer single-plant flowering duration, lower rate of enclosed glumes, larger glume angle and larger distance be- tween glumes. 35478A performed its flowering peak from 10:00-11:00 am, 1.5 h earlier than the control; 35489A exhibited higher stigma exertion rate, up to 76.23%; and 35502A had higher stigma vitality, up to 84.68%, which kept longer time than that of the CK. [Conclusion] The results will provide high-quality resources for the breeding of new japonica rice varieties with high-yield and high-temperature toler- ance.展开更多
[Objective] This study aimed to investigate the high-yielding seed production technologies of japonica hybrid rice. [Method] Key technologies affecting the seed production of japonica hybrid rice were investigated bas...[Objective] This study aimed to investigate the high-yielding seed production technologies of japonica hybrid rice. [Method] Key technologies affecting the seed production of japonica hybrid rice were investigated based on manual transplanting experiment, mechanical transplanting experiment, paclobutrazol chemical control experiment, leaf-clipping experiment, gibberellic acid treatment experiment and experiment of different row ratios of male and female parents. [Result] The duration from seeding to heading was significantly shortened with sowing date postponing. The sowing date of mechanical-transplanting parents should be 3 -4 d earlier than that of manual-transplanting parents. Spraying paclobutrazol had significantly control effect on plant height of rice seedlings, and the spraying dose should be determined based on the sensitivities of different parents to paclobutrazol, with an appropriate range of 600-900 g/hm2 . Leaf clipping had certain improving effect on the seed-setting rate. The appropriate spraying dose of gibberellin for japonica hybrid rice was 75-90 g/hm2 . The yield would be relatively high when row ratio of male and female parent was 6∶2. [Conclusion] This study laid the foundation for improving the yield of produced japonica hybrid rice seeds.展开更多
Objective] This study was conducted to investigate the main factors affect-ing the lodging resistance of plateau japonica rice. [Method] Twenty agronomic traits related to lodging resistance of plateau japonica rice w...Objective] This study was conducted to investigate the main factors affect-ing the lodging resistance of plateau japonica rice. [Method] Twenty agronomic traits related to lodging resistance of plateau japonica rice were analyzed by principal component analysis and correlation analysis among 26 varieties/lines of plateau japonica rice. [Result] The lodging resistance of the 26 varieties/lines had great dif-ference among different agronomic traits. Plant height, and wal thickness of the 4th, 3rd and 2nd internodes under the panicle had the most important influence on lodging resistance, while the diameter of the 3rd, 2nd, 4th, 1st nodes under the panicle, length of the 4th and 3rd internodes under the panicle, wal thickness of the 1st internode under the panicle had less influence. The other nine agronomic traits of rice culm did not affect or indirectly affected lodging resistance through above-mentioned agro-nomic traits. Lodging resistance had significant correlations with plant height, length of the 4th and 3rd internodes under the panicle, wal thickness of the 1st, 2nd, 3rd and 4th internodes under the panicle and diameter of the 1st, 2nd, 3rd and 4th node sunder the panicle, had insignificant correlations with panicle length, panicle weight, length of the 1st and 2nd internodes under the panicle, diameter of the 1st, 2nd, 3rd and 4th internodes under the panicle, diameter of the 5th node under the panicle. [Conclu-sion] More attention should be paid to the main factors affecting lodging resistance in breeding to improve lodging resistance of plateau japonica rice.展开更多
Yangfujing 7A, derived from the cross between Xu 9201A and Yangfujing 7 and its successive backcrosses, is a BT-type japonica CMS line developed by the Agricultural Institute of Riparian Region of Jiangsu Province. It...Yangfujing 7A, derived from the cross between Xu 9201A and Yangfujing 7 and its successive backcrosses, is a BT-type japonica CMS line developed by the Agricultural Institute of Riparian Region of Jiangsu Province. It shows good integrat- ed characteristics, stable male sterility, good flowering habits, high out crossing rate, strong disease resistance, fine grain quality (reaching the 1st class of national standards for fine quality rice) and high combining ability. In 2012, it was technically identified in Jiangsu Province. Its F1 hybrid combination Tongyoujingl (Yangfujing 7 A/R98), showing high yield and good grain quality, was registered and released to commercial production by Jiangsu Crop Variety Appraisal Committee in 2013.展开更多
While the yield potential of rice has increased but little is known about the impact of breeding on grain quality, especially under different levels of N availability. In order to investigate the integrated effects of...While the yield potential of rice has increased but little is known about the impact of breeding on grain quality, especially under different levels of N availability. In order to investigate the integrated effects of breeding and N levels on rice quality 12 japonica rice cultivars bred in the past60 years in the Yangtze River Basin were used with three levels of N: 0 kg N ha-1, 240 kg N ha-1,and 360 kg N ha-1. During the period, milling quality(brown rice percentage, milled rice percentage, and head rice percentage), appearance quality(chalky kernels percentage, chalky size, and chalkiness), and eating and cooking quality(amylose content, gel consistency, peak viscosity, breakdown, and setback) were significantly improved, but the nutritive value of the grain has declined due to a reduction in protein content. Micronutrients, such as Cu, Mg, and S contents, were decreased, and Fe, Mn, Zn, Na, Ca, K, P, B contents were increased. These changes in grain quality imply that simultaneous improvements in grain yield and grain quality are possible through selection. Overall, application of N fertilizer decreased grain quality, especially in terms of eating and cooking quality. Under higher N levels, higher protein content was the main reason for deterioration of grain quality, although lower amylose content might contribute to improving starch pasting properties. These results suggest that further improvement in grain quality will depend on both breeding and cultivation practices, especially in regard to nitrogen and water management.展开更多
The sensory quality of cooked rice is an important factor in determining its market price, as well as consumer acceptance and breeding efforts aimed at improvement of rice grain quality. In this study,the sensory qual...The sensory quality of cooked rice is an important factor in determining its market price, as well as consumer acceptance and breeding efforts aimed at improvement of rice grain quality. In this study,the sensory quality and physicochemical properties of three japonica rice varieties harvested in two different growing locations(Xiangshui and Hangzhou of China) were compared to determine the most important factors affecting the sensory quality. All the three varieties had higher scores for overall sensory quality in Xiangshui than in Hangzhou, indicating that the growing location is a key factor in determining the sensory quality of cooked japonica rice. In addition to growing location, variety(genotype) also had an important effect. Longdao 18 scored the highest for overall sensory quality in the two locations, whereas Longdao 30 had the lowest score in Xiangshui, and both Longdao 20 and Longdao 30 had the lowest scores in Hangzhou. Many physicochemical properties, such as apparent amylose content, protein content, thermal properties and free amino acid contents, showed significant differences between the two locations. Correlation analysis showed that apparent amylose content and protein content had contrasting effects on all the sensory attributes. The overall sensory quality was negatively correlated with protein content(r =-0.89, P < 0.01) and positively correlated with gel hardness(r = 0.91, P < 0.01),indicating that the protein content and hardness are important physicochemical properties for predicting the sensory quality of japonica rice. These findings will provide guidance for selection from the diverse genotypes available to develop new varieties with the desired eating and cooking quality.展开更多
Mechanical transplanting with carpet seedlings(MC) and mechanical direct seeding(MD) are newly developed planting methods, which increase in popularity and planted area each year. Knowing the difference for yield and ...Mechanical transplanting with carpet seedlings(MC) and mechanical direct seeding(MD) are newly developed planting methods, which increase in popularity and planted area each year. Knowing the difference for yield and rice quality under different planting methods is of great importance for the development of high quality and yield cultivation techniques under mechanical conditions. Therefore, three kinds of japonica rice including hybrid japonica rice, inbreed japonica rice, and soft rice were adopted as materials. And the differences in the quality of processing, appearance, cooking and eating quality, nutrition, and the rapid viscosity analyzer(RVA) profile were studied to reveal the effects of planting methods on yield and quality of different types of japonica rice. Results showed that the milled rice and head rice rates under MC was significantly higher than those under MD, and the processing quality of inbreed japonica rice was the most stable. Compared with MC, length/width ratio of rice under MD was significantly increased, and chalkiness rate, size, and degree were significantly decreased. The protein content under MD was lower than that under MC. MC showed higher peak viscosity and breakdown value than MD. The taste value was the greatest for soft rice, followed by inbreed japonica rice, and then by japonica hybrid rice, with no significant differences resulting from planting methods. Compared with MC, MD significantly improved the appearance quality, though processing quality and nutritional quality were decreased. And there was no significant difference in cooking and eating quality between MC and MD. Under different planting methods, the appearance quality of inbreed japonica rice changed the most and the processing quality was the most stable. The nutritional, cooking and eating quality of soft rice changed the least. Therefore, according to the different planting methods and market needs, selecting the appropriate rice varieties can reduce the risks in rice production and achieve good rice quality.展开更多
Lodging is an important factor limiting rice yield and quality by bending or breaking stem in japonica rice(Oryza sativa L.) production. The objectives of this study were to determine the mechanism of lodging resist...Lodging is an important factor limiting rice yield and quality by bending or breaking stem in japonica rice(Oryza sativa L.) production. The objectives of this study were to determine the mechanism of lodging resistance in japonica rice as affected by carbohydrate components, especially its related arrangement in culm tissue and response to top-dressing nitrogen(N) fertilizer. Field experiments were conducted in Danyang County, Jiangsu Province, China, by using two japonica rice varieties Wuyunjing 23(lodging-resistance variety) and W3668(lodging-susceptible variety) with three top-dressing N fertilizer rates(0, 135 and 270 kg N ha^(-1)) in 2013 and 2014. Lodging related physical parameters, morphological characteristics and stem carbohydrate components were investigated at 30 d after full heading stage. Results showed that with increasing N fertilizer rates, the lodging rate and lodging index increased rapidly primarily due to significant reduction of breaking strength in two japonica rice varieties. Correlation analysis revealed that breaking strength was significantly and positively correlated with bending stress, but negatively correlated with section modulus, except for significant correlation at W3668 in 2014. Higher stem plumpness status and structural carbohydrate contents significantly enhanced stem stiffness, despite of lower non-structural carbohydrate. With higher N fertilizer rate, the culm wall thickness was almost identical, and culm diameter increased slightly. The structural carbohydrates, especially for lignin content in culm, reduced significantly under high N rate. Further histochemical staining analysis revealed that high N treatments decreased the lignin deposition rapidly in the sclerenchyma cells of mechanical tissue, large vascular bundle and small vascular bundle region, which were consistent with reduction of bending stress, especially for W3668 and thus, resulted in poor stem strength and higher lodging index. These results suggested that structural carbohydrate plays a vital role for improving stem strength in japonica rice. N rate decreased lodging resistance primarily due to poor stem stiffness, by reducing structural carbohydrate content and lignin deposition in the secondary cell wall of lower internode culm tissue.展开更多
There is limited information about the combined effect of shading time and nitrogen (N) on grain filling and quality of rice. Therefore, two japonica super rice cultivars, Nanjing 44 and Ningjing 3, were used to stu...There is limited information about the combined effect of shading time and nitrogen (N) on grain filling and quality of rice. Therefore, two japonica super rice cultivars, Nanjing 44 and Ningjing 3, were used to study the effect of shading time and N level on the characteristics of rice panicle and grain filling as well as the corresponding yield and quality. At a low N level (150 kg N ha^-1, 150N), grain yield decreased (by 21.07-26.07%) under the treatment of 20 days of shading before heading (BH) compared with the no shading (NS) treatment. These decreases occurred because of shortened panicle length, decreased number of primary and secondary branches, as well as the grain number and weight per panicle. At 150N, in the treatment of 20 days of shading after heading (AH), grain yield also decreased (by 9.46-10.60%) due to the lower grain weight per panicle. The interaction of shading and N level had a significant effect on the number of primary and secondary branches. A high level of N (300 kg N ha^-1, 300N) could offset the negative effect of shading on the number of secondary branches and grain weight per panicle, and consequently increased the grain yield in both shading treatments. In superior grains, compared with 150N NS, the time to reach 99% of the grain weight (T99) was shortened by 1.6 to 1.7 days, and the grain weight was decreased by 4.18-5.91% in 150N BH. In 150N AH, the grain weight was 13.39-13.92% lower than that in 150N NS due to the slow mean and the maximum grain-filling rate (GRmean and GRmax). In inferior grains, grain weight and GRmean had a tendency of 150N NS〉150N BH〉150N AH. Under shaded conditions, 300N decreased the grain weight due to lower GReen both in superior and inferior grains. Compared with 150N NS, the milling and appearance qualities as well as eating and cooking quality were all decreased in 150N BH and 150N AH. Shading with the high level of 300N improved the milling quality and decreased the number of chalky rice kernels, but the eating and cooking quality was reduced with increased chalky area and overall chalkiness. Therefore, in the case of short term shading, appropriate N fertilizer could be used to improve the yield and milling quality of rice, but limited application of N fertilizer is recommended to achieve good eating and cooking quality of rice.展开更多
基金This project was financially supported by the National Natural Science Foundation of China(31601244 and 31971843)the Guangdong Provincial Key Field Research and Development Plan Project,China(2019B020221003)the Modern Agricultural Industrial Technology System of Guangdong Province,China(2020KJ105).
文摘Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments.
基金Supported by Project of Yunnan Provincial Science and Technology Department(2012BB013)National High Technology Research and Development Program of China(863 Program)(2014AA10A603)Technology Innovation Training Project of Yunnan Province(2010CI075)~~
文摘In plateau region of Yunnan Province, japonica rice-growing areas are characterized by high altitude, heavy rain in summer, low temperature and insuffi- cient accumulated temperature in grain-filling stage. In view of the characteristics above, the breeding of japonica soft rice was carried out. In this paper, the yield and quality characteristics of japonica soft rice cultivars bred recently in Yunnan Province were analyzed. The results showed that there was no difference in milling quality, but there were great differences in chemical indexes between soft rice and japonica rice, such as amylose content. For example, in soft rice, the amylose con- tent was significantly lower, but the protein content, gel consistency and taste meter value were significantly higher compared with those in japonica rice. However, there was no significant difference in alkali digestion value between soft rice and japonica rice. The starch RVA profile characteristics of soft rice were significantly better than those of japonica rice. The RVA starch profile of soft rice showed higher maximum viscosity, lower minimum viscosity, higher breakdown value, lower final viscosity, lower setback value and shorter time to reach the maximum viscosity (P〈0.05, P〈 0.01). The analysis of yield and yield components showed that the yield of japonica soft rice was still lower than that of the control cultivar, which might be caused by weaker tillering capacity, less grains per panicle and lower 1 000-grain weight. In addition, the approaches to improve grain quality and yield of japonica soft rice were also discussed.
基金grateful for grants from the National Natural Science Foundation of China(32071943)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD-2020-01)+1 种基金the Postgraduate Research and Innovation Program of Jiangsu Province,China(XKYCX17_052)the Top Talent Supporting Program of Yangzhou University,China(2015-01).
文摘Utilizing the heterosis of indica/japonica hybrid rice(IJHR)is an effective way to further increase rice grain yield.Rational application of nitrogen(N)fertilizer plays a very important role in using the heterosis of IJHR to achieve its great yield potential.However,the responses of the grain yield and N utilization of IJHR to N application rates and the underlying physiological mechanism remain elusive.The purpose of this study was to clarify these issues.Three rice cultivars currently used in rice production,an IJHR cultivar Yongyou 2640(YY2640),a japonica cultivar Lianjing 7(LJ-7)and an indica cultivar Yangdao 6(YD-6),were grown in the field with six N rates(0,100,200,300,400,and 500 kg ha^(-1))in 2018 and 2019.The results showed that with the increase in N application rates,the grain yield of each test cultivar increased at first and then decreased,and the highest grain yield was at the N rate of 400 kg ha^(-1)for YY2640,with a grain yield of 13.4 t ha^(-1),and at 300 kg ha^(-1)for LJ-7 and YD-6,with grain yields of 9.4–10.6 t ha^(-1).The grain yield and N use efficiency(NUE)of YY2640 were higher than those of LJ-7 or YD-6 at the same N rate,especially at the higher N rates.When compared with LJ-7 or YD-6,YY2640 exhibited better physiological traits,including greater root oxidation activity and leaf photosynthetic rate,higher cytokinin content in the roots and leaves,and more remobilization of assimilates from the stem to the grain during grain filling.The results suggest that IJHR could attain both higher grain yield and higher NUE than inbred rice at either low or high N application rates.Improved shoot and root traits of the IJHR contribute to its higher grain yield and NUE,and a higher content of cytokinins in the IJHR plants plays a vital role in their responses to N application rates and also benefits other physiological processes.
文摘To create the japonica germplasm with long grain and fragrance,we edited GS3 and OsBADH2 of a japonica rice cultivar Chunjiang 151 by using CRISPR/Cas9 system for multiplex genome editing.10 long-grain fragrant japonica rice plants without transgenic components were obtained.Compared with those of Chunjiang 151,the grain length,thousand-grain weight,and yield per plant of the edited line increased 12.20%,18.45%,and 8.31%,respectively.We created the fragrant japonica rice line with improved grain length and yield,which enriched the germplasm resource of japonica rice and provided reference for the improvement of rice quality.
基金Supported the Key Technologies R&D Program of Yunnan(2010BB002)the National High-tech R & D Program of China(2010AA10Z104 )+2 种基金International Cooperation Programs betweenChina and Korea (YK 2007-2010)Young and Middle-aged Academic Technology Leader Backup Talents Project (2009CI058 )Training Programme for Young and Middle-aged Talents of Technology Innovation by Yunnan (2008PY089)~~
文摘[Objective] By investigating of change rule rice starch RVA profile properties and the influence of cold tolerance on rice quality,the aim was to provide scientific references to the breeding of new cold-tolerant japonica rice varieties with high quality in the Yunnan plateau.[Method] Four cold-tolerant and five cold-sensitive japonica rice cultivars were grown at three locations with different altitudes in Yunnan plateau to investigate rice starch RVA profile characteristics.[Result] The results showed that with increasing altitude,the setback viscosity in cold-sensitive cultivars increased significantly,while the peak viscosity and breakdown viscosity decreased significantly.However,the peak viscosity and breakdown viscosity in cold-tolerant cultivars initially decreased and then gradually increased with rising altitude,whereas the setback viscosity initially increased and then decreased.[Conclusion] The starch RVA parameters of cold-tolerant cultivars were less sensitive to different environments than those of cold-sensitive cultivars.Cooking and eating quality of cold-tolerant cultivars had relatively stable trends with rising altitude,whereas cooking and eating quality of cold-sensitive cultivars had a trend toward inferior.
基金Supported by National Key Technology R&D Program(2006BAD01A01-6)~~
文摘In this study, through vitro culturing anthers of 7 F1 progenies of early Japonica rice in cold region on medium with different Fe2+ contents, it was found that Fe2+ content generated greater impacts on the induction rate and green plantlet differentiation. The result demonstrated that if Fe2+ increased from 32 to 40 mg/kg, the induction rate of early Japonica rice anther culture in N6 culture media was more then 1.4 times higher than that in N6 culture media containing 5.6 mg/kg Fe2+. In this concentration range, the induction rate increased with the increase of Fe2+ content, while if the concentration was over this concentration range, the induction rate decreased with the increase of Fe2+, showing single peak distribution. When the Fe2+ was 40 mg/kg in differentiation medium, the differentiation rate decreased dramatically. The green plantlet differentiations of callus which were induced on culture media containing 32-40 mg/kg Fe2+ were different, when they were cultured on MS culture media, and 85.7% materials could increase green plantlet productivity to about 7.8%. Therefore, increasing Fe2+in induction media properly could increase anther culture efficiency of early Japonica rice in cold region.
文摘[Objective] This study aimed to investigate the effects of different sowing dates and sites on starch RVA profile characteristics of different ecotypes of japonica rice. [Method] Five different ecotypes of japonica rice were sown at seven different dates in four rice planting regions in Jiangsu Province to analyze the differences in starch RVA profile parameters among different rice varieties. [Result] Among eight parameters of rice starch RVA profile, peak time exhibited no significant differences among different sites, while other seven parameters varied significantly or extremely significantly among different sites, sowing dates and varieties. Specifically, rice variety exerted the most significant effects on rice starch RVA profile parameters. Starch RVA profile characteristics varied significantly among different ecological conditions but exhibited no significant differences among different latitudes. To be specific, in different sites, peak viscosity (PKV), hot paste viscosity (HPV) and breakdown viscosity (BDV) demonstrated a descending order of Huai'an 〉 Suzhou 〉 Lianyungang 〉 Yangzhou. Cool paste viscosity (CPV) and consistence viscosity (CSV) were higher in the north than in the south; specifically, CPV and CSV were significantly higher in Lianyungang and Huai'an than in Yangzhou and Suzhou. Setback viscosity (SBV) showed an increasing trend with increasing latitude; specifically, SBV was significantly lower in Suzhou than in other three sites. Pasting temperature (PAT) and peak time (PET) changed slightly among different latitudes. With the postponing of sowing date, peak viscosity (PKV), hot paste viscosity (HPV), cool paste viscosity (CPV) and peak time (PET) showed a decreasing trend, setback viscosity (SBV) and consistence viscosity (CSV) increased, breakdown viscosity (BDV) increased first and then decreased, whereas pasting temperature (PAT) decreased first and then increased. Furthermore, rice starch RVA profile parameters showed the same variation trend with sowing date in different sites; early sowing within suitable sowing dates could effectively improve the parameters of rice starch RVA profile. However, different parameters exerted different variations among different sites and most parameters were higher in the north than in the south, which indicated that starch RVA profile parameters were significantly affected by sowing date in the north of Jiangsu Province. Among eight starch RVA profile parameters, setback viscosity exhibited the maximum variation coefficient, while peak time exhibited the minimum variation coefficient. Among five rice varieties, Nanjing 46 exhibited the highest peak viscosity and breakdown viscosity and the lowest setback viscosity and consistence viscosity, suggesting that Nanjing 46 had the most appropriate starch RVA profile characteristics and the best cooking and eating quality. Lianjing 4 exhibited relatively high peak viscosity and breakdown viscosity, and relatively low setback viscosity and consistence viscosity, suggesting that Lianjing 4 had good starch RVA profile characteristics. Different sowing dates and sites exerted significant effects on starch RVA profiles of different eco- types of japonica rice. Rice starch RVA profile characteristics varied significantly among different sites but exhibited no significant variations among different latitudes. In addition, starch RVA profile characteristics varied significantly among different sowing dates. Therefore, early sowing of the same variety was conducive to improving starch RVA profile characteristics in appropriate planting regions. [Conclusion] This study provided a theoretical basis for producing high-quality rice and improving the eating quality of rice in Jiangsu Province.
基金Supported by Universities Discipline Innovation and Intellectual Introduction Program Funded Projects(B08025)Key Projects of Basic Scienceand Technology Platform of Ministry of Education(505005)Ministry ofAgriculture Project"948"(2006-G8(4)-31-1)~~
文摘[Objective] The research aimed to map QTL for the sensitivity of the traits related outcrosssing of Japonica rice to exogenous GA3 and provide theoretical basis for breeding and improving the high-sensitivity sterile line.[Method] Taking Japonica rice Xiushui 79 and C bao and their recombinant inbred line population 260 lines as test materials,the sensitivity of 4 traits related outcrossing to Exogenous GA3 and their QTL mapping were studied by using composite interval mapping..[Result]Three QTLs,which cont...
文摘[Objective] This study aimed to investigate the variation characteristics of Yunnan and Korean japonica rice quality under different environmental conditions in Yunnan Plateau. [Method] Ten Yunnan japonica rice varieties and six Korean japonica rice varieties were selected to investigate the effects of ecological conditions on grain quality characteristics and starch RVA profile characteristic values of Yunnan and Korean japonica rice. [Result] The coefficient of variation of Yunnan and Korean japonica rice reached the maximum in setback viscosity (SBV). The coefficients of variation of brown rice length (BRL), chalkiness rate (CR), amylose content (AC), protein content (PC), alkali digestion value (ADV), final viscosity (FLV), setback viscosity (SBV) and peak time (PeT) of Yunnan japonica rice varieties were significantly higher than those of Korean japonica rice, while other grain quality characteristics were contrary. With the increasing altitudes, BRL, brown rice width (BRW), length-width ratio (L/W), whiteness (WH), AC, ADV, FLV and consistence viscosity (CTV) of Yunnan japonica rice and BRL, BRW, WH, PC, peak viscosity (PKV), hot viscosity (HTV) and breakdown viscosity (BDV) of Korean japonica rice were significantly reduced , while CR, PC, HTV and PeT of Yunnan japonica rice and L/W, AC, ADV and CTV of Korean japonica rice significantly increased, but CR of Korean japonica rice showed no significantly variation. PKV, BDV and pasting temperature (PaT) of Yunnan japonica rice and PaT of Korean japonica rice showed an upward trend after an initial drop with the increasing altitudes, while SBV of Yunnan japonica rice and FLV and PeT of Korean japonica rice were contrary. [Conclusion] This study provided theoretical basis for breeding of japonica rice in Yunnan Plateau.
基金Supported by the Project of Technology Innovation and Talent Cultivation in Yunnan Province(2015HB107)the Project of New Product Development of Yunnan Province"The Breeding of New Conventional Rice Variety and Its Industrialization Development"(2012BB013)+3 种基金the Major Special Project of Biological Seed Industry in Yunnan Province"The ResearchApplication of the Key Technology of the Industrialization of Plateau Japonica Rice Seed Industry"(2015ZA003)the Project of"Leading Talents Training of Yunling Industrial Technology"in Yunnan Provincethe Project of Rice Industrial Technology System of Modern Agriculture in Yunnan Province~~
文摘Yunjing 29 bred by Institute of Food Crops of Yunnan Academy of Agricultural Sciences is a new conventional japonica rice variety with fragrant and sof rice, it was examined and approved by Yunnan Provincial Variety Examination and Approval Committee in March of 2011. The variety is early-maturing, high-yield and good-quality, and has resistances to lodging, blast and bacterial leaf blight, its rice is sweet soft, goluptious and lucidus as well as not coarse when it is cold, so it is a good commodity. To further promote the popularization and cultivation of the variety, maintain its characteristics of high quality and high yield, and prevent commingling and degeneration, the purification and rejuvenation as well as breeding technology of high-quality seeds were proposed after continuous exploration and study.
基金Supported by National Key Technology Research and Development Program of China(2011BAD16B11-02YJ01,2012BAD04B01-02)Key Science and Technology Program of Heilongjiang Province+2 种基金China(GA13B101)Heilongjiang Postdoctoral Sustentation Fund(LBH-Z10038)the Funds of Heilongjiang Academy of Agricultural Sciences for Distinguished Young Scholars(2014)~~
文摘[Objective] This study was conducted to construct a super-high yield population of Japnica rice in cold regions of North China and to explore its characteristics. [Method] The super rice variety Longjing 21 was selected as the experimental material. Different row spacing(two levels), plant spacing(three levels) and seedling number per hill(three levels) were designed in field trials. Then, the growth stages,dry matter accumulation, leaf area, yield and yield components of these different treatments were measured. [Result] Rice yield had significantly negative correlation with plant spacing and row spacing, but no significant correlation with seedling number per hill. Rice yield was mainly affected by plant spacing, and less affected by seedling number per hill. The best recommended specifications for plant spacing of super rice variety Longjing 21 were 24 cm for row spacing, 12 cm for plant spacing and five seedlings per hill, and the expected yield was 10 473.0 kg/hm^2.The increased number of total spikelets(4.5×108hm2or more) in populations was the major reason for high yield. Super-high yield populations had fewer tillers at the early growth stage and achieved the expected number of productive tillers at critical leaf-age(June 25), and tiller number peaked at jointing stage(July 6) and was about 1.2 times of the expected number. The percentage of productive tillers in total tillers of super-high yield population was more than 85% at heading stage. At middle growth stage(from jointing to heading stage), the dry matter accumulation, leaf area index(LAI) at heading stage, effective leaf area, spikelet number of population,spikelet number per leaf area unit(cm2), and culm-sheath weight per stem of super-high yield population were significantly higher than those of other populations.At late growth stage(from heading to maturity stage), the leaf area decreasing rate of super-high yield population was significantly smaller than that of other populations. At late growth stage(from heading to maturity stage), the leaf area decreasing rate, crop growth rate, net assimilation rate, biomass accumulation, number of filled grains per leaf area unit(cm^2) and grain weight per leaf area unit(cm^2) of high-yield population were significantly higher than those of other populations. Output and translocation of dry matter(weight per stem and sheath and total filling rate at maturity) from heading to milky stage of super-high yield population were significantly higher than those of other populations. [Conclusion] The characteristics of superhigh yield rice in cold region of North China are enriching the amount of actual filling of sink through improving photosynthetic efficiency from heading to maturity stage on the basis of enough panicle numbers.
基金Supported by Scientific and Technological Talents Program of Chongqing(cstc2013kjrcqnrc80002)Key Science and Technology Research and Development Program of Chongqing(cstc2012gg B80005,cstc2012gg C80002)the Fund from Chongqing Academy of Agricultural Sciences for Agricultural Development(NKY,2013AC008)~~
文摘[Objective] This study was conducted to screen japonica rice male sterile lines with good flowering characteristics under high temperature and summer drought. [Method] The flowering habits of 23 japonica male sterile lines, such as flowering peak, single-panicle flowering duration, single-plant flowering duration, en- closed glume rate, glume-opening angle, the distance between glumes, stigma exer- tion rate and sigma vitality, were compared with II-32A as a control under above weather condition. [Result] The flowering characteristics had significant difference a- mong the tested rice lines. Compared with the control, three japonica rice male ster- ile lines 35478A, 35489A and 35502A had better flowering traits, such as earlier flowering peak, longer single-panicle flowering duration, longer single-plant flowering duration, lower rate of enclosed glumes, larger glume angle and larger distance be- tween glumes. 35478A performed its flowering peak from 10:00-11:00 am, 1.5 h earlier than the control; 35489A exhibited higher stigma exertion rate, up to 76.23%; and 35502A had higher stigma vitality, up to 84.68%, which kept longer time than that of the CK. [Conclusion] The results will provide high-quality resources for the breeding of new japonica rice varieties with high-yield and high-temperature toler- ance.
基金Supported by National 863 Project of China"Creation and Application of Highly Dominant Japonica Hybrids"(2011AA10A101)~~
文摘[Objective] This study aimed to investigate the high-yielding seed production technologies of japonica hybrid rice. [Method] Key technologies affecting the seed production of japonica hybrid rice were investigated based on manual transplanting experiment, mechanical transplanting experiment, paclobutrazol chemical control experiment, leaf-clipping experiment, gibberellic acid treatment experiment and experiment of different row ratios of male and female parents. [Result] The duration from seeding to heading was significantly shortened with sowing date postponing. The sowing date of mechanical-transplanting parents should be 3 -4 d earlier than that of manual-transplanting parents. Spraying paclobutrazol had significantly control effect on plant height of rice seedlings, and the spraying dose should be determined based on the sensitivities of different parents to paclobutrazol, with an appropriate range of 600-900 g/hm2 . Leaf clipping had certain improving effect on the seed-setting rate. The appropriate spraying dose of gibberellin for japonica hybrid rice was 75-90 g/hm2 . The yield would be relatively high when row ratio of male and female parent was 6∶2. [Conclusion] This study laid the foundation for improving the yield of produced japonica hybrid rice seeds.
基金Supported by Program for the Breeding and Industrial Development of Conventional Rice Varieties(2010BB013)Training Plan of Technological Innovation Talents of Yunnan Province(2010CI075)~~
文摘Objective] This study was conducted to investigate the main factors affect-ing the lodging resistance of plateau japonica rice. [Method] Twenty agronomic traits related to lodging resistance of plateau japonica rice were analyzed by principal component analysis and correlation analysis among 26 varieties/lines of plateau japonica rice. [Result] The lodging resistance of the 26 varieties/lines had great dif-ference among different agronomic traits. Plant height, and wal thickness of the 4th, 3rd and 2nd internodes under the panicle had the most important influence on lodging resistance, while the diameter of the 3rd, 2nd, 4th, 1st nodes under the panicle, length of the 4th and 3rd internodes under the panicle, wal thickness of the 1st internode under the panicle had less influence. The other nine agronomic traits of rice culm did not affect or indirectly affected lodging resistance through above-mentioned agro-nomic traits. Lodging resistance had significant correlations with plant height, length of the 4th and 3rd internodes under the panicle, wal thickness of the 1st, 2nd, 3rd and 4th internodes under the panicle and diameter of the 1st, 2nd, 3rd and 4th node sunder the panicle, had insignificant correlations with panicle length, panicle weight, length of the 1st and 2nd internodes under the panicle, diameter of the 1st, 2nd, 3rd and 4th internodes under the panicle, diameter of the 5th node under the panicle. [Conclu-sion] More attention should be paid to the main factors affecting lodging resistance in breeding to improve lodging resistance of plateau japonica rice.
基金Supported by the Science and Technology Innovation Program of Nantong City,Jiangsu Province(HL2012019)~~
文摘Yangfujing 7A, derived from the cross between Xu 9201A and Yangfujing 7 and its successive backcrosses, is a BT-type japonica CMS line developed by the Agricultural Institute of Riparian Region of Jiangsu Province. It shows good integrat- ed characteristics, stable male sterility, good flowering habits, high out crossing rate, strong disease resistance, fine grain quality (reaching the 1st class of national standards for fine quality rice) and high combining ability. In 2012, it was technically identified in Jiangsu Province. Its F1 hybrid combination Tongyoujingl (Yangfujing 7 A/R98), showing high yield and good grain quality, was registered and released to commercial production by Jiangsu Crop Variety Appraisal Committee in 2013.
基金supported by grants from the National Natural Science Foundation of China (31461143105, 31271641, 31471438)the National Key Technology R&D Program of China (2011BAD16B14, 2012BAD04B08, 2014AA10A605)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD-2014-2)
文摘While the yield potential of rice has increased but little is known about the impact of breeding on grain quality, especially under different levels of N availability. In order to investigate the integrated effects of breeding and N levels on rice quality 12 japonica rice cultivars bred in the past60 years in the Yangtze River Basin were used with three levels of N: 0 kg N ha-1, 240 kg N ha-1,and 360 kg N ha-1. During the period, milling quality(brown rice percentage, milled rice percentage, and head rice percentage), appearance quality(chalky kernels percentage, chalky size, and chalkiness), and eating and cooking quality(amylose content, gel consistency, peak viscosity, breakdown, and setback) were significantly improved, but the nutritive value of the grain has declined due to a reduction in protein content. Micronutrients, such as Cu, Mg, and S contents, were decreased, and Fe, Mn, Zn, Na, Ca, K, P, B contents were increased. These changes in grain quality imply that simultaneous improvements in grain yield and grain quality are possible through selection. Overall, application of N fertilizer decreased grain quality, especially in terms of eating and cooking quality. Under higher N levels, higher protein content was the main reason for deterioration of grain quality, although lower amylose content might contribute to improving starch pasting properties. These results suggest that further improvement in grain quality will depend on both breeding and cultivation practices, especially in regard to nitrogen and water management.
基金financially supported by the National Key R&D Program of China(Grant No.2016YFD0400104)the Fundamental Research Funds for the Central Universities at Zhejiang University,China(Grant No.2016XZZX001-09)
文摘The sensory quality of cooked rice is an important factor in determining its market price, as well as consumer acceptance and breeding efforts aimed at improvement of rice grain quality. In this study,the sensory quality and physicochemical properties of three japonica rice varieties harvested in two different growing locations(Xiangshui and Hangzhou of China) were compared to determine the most important factors affecting the sensory quality. All the three varieties had higher scores for overall sensory quality in Xiangshui than in Hangzhou, indicating that the growing location is a key factor in determining the sensory quality of cooked japonica rice. In addition to growing location, variety(genotype) also had an important effect. Longdao 18 scored the highest for overall sensory quality in the two locations, whereas Longdao 30 had the lowest score in Xiangshui, and both Longdao 20 and Longdao 30 had the lowest scores in Hangzhou. Many physicochemical properties, such as apparent amylose content, protein content, thermal properties and free amino acid contents, showed significant differences between the two locations. Correlation analysis showed that apparent amylose content and protein content had contrasting effects on all the sensory attributes. The overall sensory quality was negatively correlated with protein content(r =-0.89, P < 0.01) and positively correlated with gel hardness(r = 0.91, P < 0.01),indicating that the protein content and hardness are important physicochemical properties for predicting the sensory quality of japonica rice. These findings will provide guidance for selection from the diverse genotypes available to develop new varieties with the desired eating and cooking quality.
基金grants from the National Key R&D Program of China(2016YFD0300503)the earmarked fund for China Agriculture Research System(CARS-01-27)+2 种基金the Key Research Program of Jiangsu Province,China(BE2016344)the earmarked fund for Jiangsu Agricultural Industry Technology System,China(JATS[2018]298)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Mechanical transplanting with carpet seedlings(MC) and mechanical direct seeding(MD) are newly developed planting methods, which increase in popularity and planted area each year. Knowing the difference for yield and rice quality under different planting methods is of great importance for the development of high quality and yield cultivation techniques under mechanical conditions. Therefore, three kinds of japonica rice including hybrid japonica rice, inbreed japonica rice, and soft rice were adopted as materials. And the differences in the quality of processing, appearance, cooking and eating quality, nutrition, and the rapid viscosity analyzer(RVA) profile were studied to reveal the effects of planting methods on yield and quality of different types of japonica rice. Results showed that the milled rice and head rice rates under MC was significantly higher than those under MD, and the processing quality of inbreed japonica rice was the most stable. Compared with MC, length/width ratio of rice under MD was significantly increased, and chalkiness rate, size, and degree were significantly decreased. The protein content under MD was lower than that under MC. MC showed higher peak viscosity and breakdown value than MD. The taste value was the greatest for soft rice, followed by inbreed japonica rice, and then by japonica hybrid rice, with no significant differences resulting from planting methods. Compared with MC, MD significantly improved the appearance quality, though processing quality and nutritional quality were decreased. And there was no significant difference in cooking and eating quality between MC and MD. Under different planting methods, the appearance quality of inbreed japonica rice changed the most and the processing quality was the most stable. The nutritional, cooking and eating quality of soft rice changed the least. Therefore, according to the different planting methods and market needs, selecting the appropriate rice varieties can reduce the risks in rice production and achieve good rice quality.
基金Funding was provided by the National Key Technologies R&D Program of China during the 12th Five-Year Plan period (2011BAD16B14,2012BAD20B05,2012BAD04B08)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Lodging is an important factor limiting rice yield and quality by bending or breaking stem in japonica rice(Oryza sativa L.) production. The objectives of this study were to determine the mechanism of lodging resistance in japonica rice as affected by carbohydrate components, especially its related arrangement in culm tissue and response to top-dressing nitrogen(N) fertilizer. Field experiments were conducted in Danyang County, Jiangsu Province, China, by using two japonica rice varieties Wuyunjing 23(lodging-resistance variety) and W3668(lodging-susceptible variety) with three top-dressing N fertilizer rates(0, 135 and 270 kg N ha^(-1)) in 2013 and 2014. Lodging related physical parameters, morphological characteristics and stem carbohydrate components were investigated at 30 d after full heading stage. Results showed that with increasing N fertilizer rates, the lodging rate and lodging index increased rapidly primarily due to significant reduction of breaking strength in two japonica rice varieties. Correlation analysis revealed that breaking strength was significantly and positively correlated with bending stress, but negatively correlated with section modulus, except for significant correlation at W3668 in 2014. Higher stem plumpness status and structural carbohydrate contents significantly enhanced stem stiffness, despite of lower non-structural carbohydrate. With higher N fertilizer rate, the culm wall thickness was almost identical, and culm diameter increased slightly. The structural carbohydrates, especially for lignin content in culm, reduced significantly under high N rate. Further histochemical staining analysis revealed that high N treatments decreased the lignin deposition rapidly in the sclerenchyma cells of mechanical tissue, large vascular bundle and small vascular bundle region, which were consistent with reduction of bending stress, especially for W3668 and thus, resulted in poor stem strength and higher lodging index. These results suggested that structural carbohydrate plays a vital role for improving stem strength in japonica rice. N rate decreased lodging resistance primarily due to poor stem stiffness, by reducing structural carbohydrate content and lignin deposition in the secondary cell wall of lower internode culm tissue.
基金grants from the National Key Technology R&D Program of China (2016YFD0300503)the Key Research Program of Jiangsu Province, China (BE2016344)+3 种基金the earmarked fund for China Agriculture Research System (CARS-01-27)the National Nature Science Foundation of China (31701350)the Program for Scientific Elitists of Yangzhou University, Chinafunded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘There is limited information about the combined effect of shading time and nitrogen (N) on grain filling and quality of rice. Therefore, two japonica super rice cultivars, Nanjing 44 and Ningjing 3, were used to study the effect of shading time and N level on the characteristics of rice panicle and grain filling as well as the corresponding yield and quality. At a low N level (150 kg N ha^-1, 150N), grain yield decreased (by 21.07-26.07%) under the treatment of 20 days of shading before heading (BH) compared with the no shading (NS) treatment. These decreases occurred because of shortened panicle length, decreased number of primary and secondary branches, as well as the grain number and weight per panicle. At 150N, in the treatment of 20 days of shading after heading (AH), grain yield also decreased (by 9.46-10.60%) due to the lower grain weight per panicle. The interaction of shading and N level had a significant effect on the number of primary and secondary branches. A high level of N (300 kg N ha^-1, 300N) could offset the negative effect of shading on the number of secondary branches and grain weight per panicle, and consequently increased the grain yield in both shading treatments. In superior grains, compared with 150N NS, the time to reach 99% of the grain weight (T99) was shortened by 1.6 to 1.7 days, and the grain weight was decreased by 4.18-5.91% in 150N BH. In 150N AH, the grain weight was 13.39-13.92% lower than that in 150N NS due to the slow mean and the maximum grain-filling rate (GRmean and GRmax). In inferior grains, grain weight and GRmean had a tendency of 150N NS〉150N BH〉150N AH. Under shaded conditions, 300N decreased the grain weight due to lower GReen both in superior and inferior grains. Compared with 150N NS, the milling and appearance qualities as well as eating and cooking quality were all decreased in 150N BH and 150N AH. Shading with the high level of 300N improved the milling quality and decreased the number of chalky rice kernels, but the eating and cooking quality was reduced with increased chalky area and overall chalkiness. Therefore, in the case of short term shading, appropriate N fertilizer could be used to improve the yield and milling quality of rice, but limited application of N fertilizer is recommended to achieve good eating and cooking quality of rice.