The low-cycle fatigue behaviors of AZ91HP-F,AZ91HP-T6,AZ91HP-T4 and AM50HP-F were investigated,and the potential application of AM50HP-F in steering wheel frame was studied.The steering wheel properties were character...The low-cycle fatigue behaviors of AZ91HP-F,AZ91HP-T6,AZ91HP-T4 and AM50HP-F were investigated,and the potential application of AM50HP-F in steering wheel frame was studied.The steering wheel properties were characterized by bend fatigue and tensile testing,and the fatigue fracture was analyzed by SEM.The results show that the fatigue lives of AZ91HP-F and AZ91HP-T6 have little difference by comparing the low-cycles fatigue properties of different heat treatment states.The crack propagation velocity of AZ91HP-T4 is lower than that of AZ91HP-F and AZ91HP-T6.The die casting technological parameters of the magnesium steering wheel have been optimized with the aid of flow-3D software.The tensile testing results of the different part of magnesium steering wheel show that the ultimate tensile strength and elongation in the wheel arm and wheel rim have no difference and the average value are 220 MPa and 5%,respectively.The fracture is in the brittleness mode and the fatigue crack initiates at the outside of the wheel rim.展开更多
Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horiz...Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests often column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio, shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns.展开更多
To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted ...To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted on two test walls. The test results confirm the feasibility of the novel joints as well as the favorable seismic performance of the walls, even though certain optimization measures should be taken to improve the ductility. The load-transferring mechanism subsequently is theoretically investigated based on the experimental study. The theoretical results show the load-transferring route of the novel joints is concise and definite. During the elastic stage, the vertical shear stress in the connecting steel frame(CSF) distributes uniformly; and each high-strength bolt(HSB)primarily delivers vertical shear force. However, the stress in the CSF redistributes when the walls develop into the elastic-plastic stage. At the ultimate state, the vertical shear stress and horizontal normal stress in the CSF distribute linearly; and the HSBs at both ends of the CSF transfer the maximum shear forces.展开更多
基金Project(2007CB613705)supported by the National Basic Research Program of China
文摘The low-cycle fatigue behaviors of AZ91HP-F,AZ91HP-T6,AZ91HP-T4 and AM50HP-F were investigated,and the potential application of AM50HP-F in steering wheel frame was studied.The steering wheel properties were characterized by bend fatigue and tensile testing,and the fatigue fracture was analyzed by SEM.The results show that the fatigue lives of AZ91HP-F and AZ91HP-T6 have little difference by comparing the low-cycles fatigue properties of different heat treatment states.The crack propagation velocity of AZ91HP-T4 is lower than that of AZ91HP-F and AZ91HP-T6.The die casting technological parameters of the magnesium steering wheel have been optimized with the aid of flow-3D software.The tensile testing results of the different part of magnesium steering wheel show that the ultimate tensile strength and elongation in the wheel arm and wheel rim have no difference and the average value are 220 MPa and 5%,respectively.The fracture is in the brittleness mode and the fatigue crack initiates at the outside of the wheel rim.
基金National Natural Science Foundation Under Grant No. 50708081 and 90815029Key Project of Chinese National Program for Fundamental Research and Development 2007CB714202Innovation Program of Shanghai Municipal Education 09ZZ32
文摘Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests often column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio, shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns.
基金Project(51078077)supported by the National Natural Science Foundation of China
文摘To study the seismic performance and load-transferring mechanism of an innovative precast shear wall(IPSW) involving vertical joints, an experimental investigation and theoretical analysis were successively conducted on two test walls. The test results confirm the feasibility of the novel joints as well as the favorable seismic performance of the walls, even though certain optimization measures should be taken to improve the ductility. The load-transferring mechanism subsequently is theoretically investigated based on the experimental study. The theoretical results show the load-transferring route of the novel joints is concise and definite. During the elastic stage, the vertical shear stress in the connecting steel frame(CSF) distributes uniformly; and each high-strength bolt(HSB)primarily delivers vertical shear force. However, the stress in the CSF redistributes when the walls develop into the elastic-plastic stage. At the ultimate state, the vertical shear stress and horizontal normal stress in the CSF distribute linearly; and the HSBs at both ends of the CSF transfer the maximum shear forces.