期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Segment differential aggregation representation and supervised compensation learning of ConvNets for human action recognition
1
作者 REN ZiLiang ZHANG QieShi +3 位作者 CHENG Qin XU ZhenYu YUAN Shuai LUO DeLin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第1期197-208,共12页
With more multi-modal data available for visual classification tasks,human action recognition has become an increasingly attractive topic.However,one of the main challenges is to effectively extract complementary feat... With more multi-modal data available for visual classification tasks,human action recognition has become an increasingly attractive topic.However,one of the main challenges is to effectively extract complementary features from different modalities for action recognition.In this work,a novel multimodal supervised learning framework based on convolution neural networks(Conv Nets)is proposed to facilitate extracting the compensation features from different modalities for human action recognition.Built on information aggregation mechanism and deep Conv Nets,our recognition framework represents spatial-temporal information from the base modalities by a designed frame difference aggregation spatial-temporal module(FDA-STM),that the networks bridges information from skeleton data through a multimodal supervised compensation block(SCB)to supervise the extraction of compensation features.We evaluate the proposed recognition framework on three human action datasets,including NTU RGB+D 60,NTU RGB+D 120,and PKU-MMD.The results demonstrate that our model with FDA-STM and SCB achieves the state-of-the-art recognition performance on three benchmark datasets. 展开更多
关键词 action recognition segment frame difference aggregation supervised compensation learning ConvNets
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部