In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concea...In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concealed bracing detail. The four tested structures included one normal concrete model, one recycled coarse aggregate concrete model, and two recycled coarse and fi ne aggregate concrete models with or without concealed bracings inside the shear walls. The dynamic characteristics, dynamic response and failure mode of each model were compared and analyzed. Finite element models were also developed and nonlinear time-history response analysis was conducted. The test and analysis results show that the seismic performance of the recycled coarse aggregate concrete frame-shear wall structure is slightly worse than the normal concrete structure. The seismic resistance capacity of the recycled concrete frame-shear wall structure can be greatly improved by setting up concealed bracings inside the walls. With appropriate design, the recycled coarse aggregate concrete frame-shear wall structure and recycled concrete structure with concealed bracings inside the walls can be applied in buildings.展开更多
Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes ...Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes of plant growth and development,although the functions of SL in fiber development remain largely unknown.Here,we found that the endogenous SLs were significantly higher in fibers at 20 days post-anthesis(DPA).Exogenous SLs significantly increased fiber length and cell wall thickness.Furthermore,we cloned three key SL biosynthetic genes,namely GhD27,GhMAX3,and GhMAX4,which were highly expressed in fibers,and subcellular localization analyses revealed that GhD27,GhMAX3,and GhMAX4 were localized in the chloroplast.The exogenous expression of GhD27,GhMAX3,and GhMAX4 complemented the physiological phenotypes of d27,max3,and max4 mutations in Arabidopsis,respectively.Knockdown of GhD27,GhMAX3,and GhMAX4 in cotton resulted in increased numbers of axillary buds and leaves,reduced fiber length,and significantly reduced fiber thickness.These findings revealed that SLs participate in plant growth,fiber elongation,and secondary cell wall formation in cotton.These results provide new and effective genetic resources for improving cotton fiber yield and plant architecture.展开更多
The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylest...The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylesterification.Despite the recognized importance of pectin methylesterification in seed germination,the specific mechanisms that govern this process remain unclear.In this study,we demonstrated that the overexpression of GhPMEI53is associated with a decrease in PME activity and an increase in pectin methylesterification.This leads to seed cell wall softening,which positively regulates cotton seed germination.AtPMEI19,the homologue in Arabidopsis thaliana,plays a similar role in seed germination to GhPMEI53,indicating a conserved function and mechanism of PMEI in seed germination regulation.Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength.Additionally,the pathways of abscicic acid(ABA)and gibberellin(GA)in the transgenic materials showed significant changes,suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination.In summary,GhPMEI53 and its homologs alter the mechanical properties of cell walls,which influence the mechanical resistance of the endosperm or testa.Moreover,they impact cellular phytohormone pathways(e.g.,ABA and GA)to regulate seed germination.These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction,and contribute to a more comprehensive understanding of the PME/PMEI gene superfamily in plants.展开更多
The nutrient digestion,absorption and biological activity of bee pollen may be limited due to the complex pollen wall.Here,the effect of superfine grinding technology on the release of nutrients from bee pollen were i...The nutrient digestion,absorption and biological activity of bee pollen may be limited due to the complex pollen wall.Here,the effect of superfine grinding technology on the release of nutrients from bee pollen were investigated,and their antioxidant activities and in vitro digestion were explored in this study.Results showed that the content of nutrients in bee pollen increased after wall disruption.Among them,fat content increased by 22.55%-8.31%,protein content increased by 0.54%-4.91%,starch content increased by 36.31%-48.64%,soluble sugar content increased by 20.57%-29.67%,total phenolic acid content increased by 11.73%-86.98%and total flavonoids content increased by 14.29%-24.79%.At the same time,the antioxidant activity increased by 14.84%-46.00%.Furthermore,the active components such as phenolic compounds in the wall-disruption bee pollen were more readily to be released during the in vitro digestion,and easier to be absorbed because of their higher bioaccessibility.Antioxidant activities during in vitro digestion were also improved in walldisruption bee pollen.These findings provide evidence that bee pollen wall disruption was suggested,thus,it is more conducive to exerting the value of bee pollen in functional foods.展开更多
To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general...To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed.展开更多
Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t...Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.展开更多
Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the da...Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues.展开更多
Prototype experiments were carried out on the explosion-proof performance of the RC blast wall.The mass of TNT detonated in the experiments is 5 kg and 20 kg respectively.The shock wave overpressure was tested in diff...Prototype experiments were carried out on the explosion-proof performance of the RC blast wall.The mass of TNT detonated in the experiments is 5 kg and 20 kg respectively.The shock wave overpressure was tested in different regions.The above experiments were numerically simulated,and the simulated shock wave overpressure waveforms were compared with that tested and given by CONWEP program.The results show that the numerically simulated waveform is slightly different from the test waveform,but similar to CONWEP waveform.Through dimensional analysis and numerical simulation under different working conditions,the equation for the attenuation rate of the diffraction overpressure behind the blast wall was obtained.According to the corresponding standards,the degree of casualties and the damage degree of the brick concrete building at a certain distance behind the wall can be determined when parameters are set.The above results can provide a reference for the design and construction of the reinforced concrete blast wall.展开更多
Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the freq...Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the frequencies of SW modes and the corresponding DW modes are consistent with each other if they have the same node number along the width direction. This consistency is more pronounced in wide and thin nanostrips, favoring the DW motion driven by SWs.Further analysis of the moving behavior of a DW driven by SWs is also carried out. The average DW speed can reach a larger value of ~ 140 m/s under two different SW sources. We argue that this study is very meaningful for the potential application of DW motion driven by SWs.展开更多
Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during ...Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during the rocking process.An innovative RW with a curved interface is proposed to prevent interfacial corners from producing local damage,enhancing its earthquake resilient performance(ERP).The precast wall panel with a curved interface is assembled into an integral self-centering hybrid rocking wall(SCRW)by two post-tensioned unbonded prestressed tendons.Moreover,two ordinary energy dissipation steel rebars and two shear reinforcements are arranged to increase the energy dissipation capacity and lateral resistance.Two SCRW specimens and one monolithic reinforced concrete(RC)shear wall(SW)were tested under pseudo-static loading to compare the ERPs of the proposed SCRW and the SW,focusing on studying the effect of the curved interface on the SCRW.The key resilient performance of rocking effects,failure modes,and hysteretic properties of the SCRW were explored.The results show that nonlinear deformations of the SCRW are concentrated along the interface between the SCRW and the foundation,avoiding damage within the SCRW.The restoring force provided by the prestressed tendons can effectively realize self-centering capacity with small residual deformation,and the resilient performance of the SCRW is better than that of monolithic SW.In addition,the curved interface of the SCRW makes the rocking center change and move inward,partially relieving the stress concentration and crush of concrete.The rocking range of the rocking center is about 41.4%of the width of the SCRW.展开更多
Combining the detached eddy simulation(DES)method and Ffowcs Williams-Hawkings(FW-H)equation,the effect of bogie cavity end wall inclination on the flow field and aerodynamic noise in the bogie region is numerically s...Combining the detached eddy simulation(DES)method and Ffowcs Williams-Hawkings(FW-H)equation,the effect of bogie cavity end wall inclination on the flow field and aerodynamic noise in the bogie region is numerically studied.First,the simulation is conducted based on a simplified cavity-bogie model,including five cases with different inclination angles of the front and rear walls of the cavity.By comparing and analyzing the flow field and acoustic results of the five cases,the influence of the regularity and mechanism of the bogie cavity end wall inclination on the flow field and the aerodynamic noise of the bogie region are revealed.Then,the noise reduction strategy determined by the results of the simplified cavity-bogie model is applied to a three-car marshaling train model to verify its effectiveness when applied to the real train.The results reveal that the forward inclination of the cavity front wall enlarges the influence area of shear vortex structures formed at the leading edge of the cavity and intensifies the interaction between the vortex structures and the front wheelset,frontmotor,and front gearbox,resulting in the increase of the aerodynamic noise generated by the bogie itself.The backward inclination of the cavity rear wall is conducive to guiding the vortex structures flow out of the cavity and weakening the interaction between the shear vortex structures and the cavity rear wall,leading to the reduction of the aerodynamic noise generated by the bogie cavity.Inclining the rear end wall of the foremost bogie cavity of the head car is a feasible aerodynamic noise reduction measure for high-speed trains.展开更多
Effects of three-dimensional(3D)magnetic field perturbations due to feedback control of an unstable n=1(n is toroidal mode number)resistive wall mode(RWM)on the energetic particle(EP)losses are systematically investig...Effects of three-dimensional(3D)magnetic field perturbations due to feedback control of an unstable n=1(n is toroidal mode number)resistive wall mode(RWM)on the energetic particle(EP)losses are systematically investigated for the HL-3 tokamak.The MARS-F(Liu et al 2000 Phys.Plasmas 73681)code,facilitated by the test particle guiding center tracing module REORBIT,is utilized for the study.The RWM is found to generally produce no EP loss for cocurrent particles in HL-3.Assuming the same perturbation level at the sensor location for the close-loop system,feedback produces nearly the same loss of counter-current EPs compared to the open-loop case.Assuming however that the sensor signal is ten times smaller in the close-loop system than the open-loop counter part(reflecting the fact that the RWM is more stable with feedback),the counter-current EP loss is found significantly reduced in the former.Most of EP losses occur only for particles launched close to the plasma edge,while particles launched further away from the plasma boundary experience much less loss.The strike points of lost EPs on the HL-3 limiting surface become more scattered for particles launched closer to the plasma boundary.Taking into account the full gyro-orbit of particles while approaching the limiting surface,REORBIT finds slightly enhanced loss fraction.展开更多
In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automo...In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automobiles.Previously,the application of Mg alloys in automobiles,especially in automotive cockpit components,is quite extensive,while it has almost disappeared for a period of time due to its relatively high cost,causing a certain degree of information loss in the application technology of Mg alloy parts in automobiles.The rapid development of automotive technology has led to a higher requirement for the automotive components compared with those traditional one.Therefore,whatever the components themselves,or the Mg alloy materials and die casting process have to face an increasing challenge,needing to be upgraded.In addition,owing to its high integration characteristics,the application of Mg alloy die casting technology in large-sized and thin-walled automotive parts has inherent advantages and needs to be expanded urgently.Indeed,it necessitates exploring advance Mg alloys and new product structures and optimizing die casting processes.This article summarizes and analyzes the development status of thin-walled and large-sized die casting Mg alloy parts in passenger car cockpit and corresponding material selection methods,die casting processes as well as mold design techniques.Furthermore,this work will aid researchers in establishing a comprehensive understanding of the manufacture of thin-walled and large-sized die casting Mg alloy parts in automobile cockpit.It will also assist them in developing new Mg alloys with improved comprehensive performance and new processes to meet the high requirements for die casting automotive components.展开更多
The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft...The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft.展开更多
H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,...H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,hysteresis curves,bearing capacity,ductility,energy dissipation capacity,stiffness degradation and strain distribution were discussed.The calculation method of structural theoretical internal force was presented.The results showed that the overall structural seismic performance was better,and the structural ductility met the demands of elastic-plastic inter-story drift angle for seismic design.The H-steel weak-axis connection structure obtained better energy dissipation capacity,and its bearing capacity and stiffness were slightly different from the strong-axis connection.The heat preservation and decoration performance of composite wallboard and the all-bolted connection of the steel frame realized prefabrication during the whole construction period.The plastic hinge of the steel beam can be moved outwards because of the L-angles,which effectively avoids stress concentration in joint areas and expands the plastic hinge range.The errors between the theoretical structural capacity calculated by the plastic analysis method and the test results were within 2.44%.In addition,structural failure mechanisms and bearing capacities were verified by the finite element(FE)analysis,and the effects of the main parameters on the structures were investigated.The FE verification results were the same as in the test.The research results provide theoretical support and technical guidance for the application of thermal insulation and decorative composite wall panels in H-shaped steel all-bolted steel frames.展开更多
Abiotic and biotic stressors adversely affect plant survival,biomass generation,and crop yields.As the global availability of arable land declines and the impacts of global warming intensify,such stressors may have in...Abiotic and biotic stressors adversely affect plant survival,biomass generation,and crop yields.As the global availability of arable land declines and the impacts of global warming intensify,such stressors may have increasingly pronounced effects on agricultural productivity.Currently,researchers face the overarching challenge of comprehensively enhancing plant resilience to abiotic and biotic stressors.The secondary cell wall plays a crucial role in bolstering the stress resistance of plants.To increase plant resistance to stress through genetic manipulation of the secondary cell wall,we cloned a cell wall protein designated glycine-rich protein-like(GhGRPL)from cotton fibers,and found that it is specifically expressed during the period of secondary cell wall biosynthesis.Notably,this protein differs from its Arabidopsis homolog,AtGRP,since its glycine-rich domain is deficient in glycine residues.GhGRPL is involved in secondary cell wall deposition.Upregulation of GhGRPL enhances lignin accumulation and,consequently,the thickness of the secondary cell walls,thereby increasing the plant’s resistance to abiotic stressors,such as drought and salinity,and biotic threats,including Verticillium dahliae infection.Conversely,interference with GhGRPL expression in cotton reduces lignin accumulation and compromises that resistance.Taken together,our findings elucidate the role of GhGRPL in regulating secondary cell wall development through its influence on lignin deposition,which,in turn,reinforces cell wall robustness and impermeability.These findings highlight the promising near-future prospect of adopting GhGRPL as a viable,effective approach for enhancing plant resilience to abiotic and biotic stress factors.展开更多
The presence of horizontal layered rocks in tunnel engineering significantly impacts the stability and strength of the surrounding rock mass,leading to floor heave in the tunnel.This study focused on preparing layered...The presence of horizontal layered rocks in tunnel engineering significantly impacts the stability and strength of the surrounding rock mass,leading to floor heave in the tunnel.This study focused on preparing layered specimens of rock-like material with varying thickness to investigate the failure behaviors of tunnel floors.The results indicate that thin-layered rock mass exhibits weak interlayer bonding,causing rock layers near the surface to buckle and break upwards when subjected to horizontal squeezing.With an increase in the layer thickness,a transition in failure mode occurs from upward buckling to shear failure along the plane,leading to a noticeable reduction in floor heave deformation.The primary cause of significant deformation in floor heave is upward buckling failure.To address this issue,the study proposes the installation of a partition wall in the middle of the floor to mitigate heave deformation of the rock layers.The results demonstrate that the partition wall has a considerable stabilizing effect on the floor,reducing the zone of buckling failure and minimizing floor heave deformation.It is crucial for the partition wall to be sufficiently high to prevent buckling failure and ensure stability.Through simulation calculations on an engineering example,it is confirmed that implementing a partition wall can effectively reduce floor heave and enhance the stability of tunnel floor.展开更多
The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement co...The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement concrete facing panels,and gravity-type earth-retaining walls.The finite element(FE)simulations utilized a 3D plane strain condition to model full-scale ER walls and numerous nonlinear dynamics analyses.The seismic performance of differentmodels,which includes reinforcement concrete panels and gravity-type and hollowprecast concrete ER walls,was simulated and examined using the FE approach.It also displays comparative studies such as stress distribution,deflection of the wall,acceleration across the wall height,lateral wall displacement,lateral wall pressure,and backfill plastic strain.Three components of the created ER walls were found throughout this research procedure.One is a granular reinforcement backfill,while the other is a wall-facing panel and base foundation.The dynamic response effects of varied earth-retaining walls have also been studied.It was discovered that the facing panel of the model significantly impacts the earthquake-induced displacement of ER walls.The proposed analytical model’s validity has been evaluated and compared with the reinforcement concrete facing panels,gravity-type ER wall,scientifically available data,and American Association of State Highway and Transportation Officials(AASHTO)guidelines results based on FE simulation.The results of the observations indicate that the hollow prefabricated concrete ER wall is the most feasible option due to its lower displacement and high-stress distribution compared to the two types.The methodology and results of this study establish standards for future analogous investigations and professionals,particularly in light of the increasing computational capabilities of desktop computers.展开更多
BACKGROUND Malignant triton tumors(MTTs)comprise a subgroup of malignant peripheral nerve sheath tumors(MPNSTs)that exhibits rhabdomyosarcomatous differen-tiation and follow an aggressive course.MTTs are primarily loc...BACKGROUND Malignant triton tumors(MTTs)comprise a subgroup of malignant peripheral nerve sheath tumors(MPNSTs)that exhibits rhabdomyosarcomatous differen-tiation and follow an aggressive course.MTTs are primarily located along peripheral nerves.Cases of MTTs in the abdominal wall have not been reported.MTT has a poorer prognosis than classic MPNSTs,and accurate diagnosis necessitates a keen understanding of the clinical history and knowledge of its differential diagnosis intricacies.Treatment for MTTs mirrors that for MPNSTs and is predominantly surgical.CASE SUMMARY A 49-year-old woman presented with a subcutaneous mass in her lower abdo-minal wall and a pre-existing surgical scar that had grown slowly over 3-4 months before the consultation.She had previously undergone radical hysterectomy and concurrent chemo-radiotherapy for cervical cancer approximately 5 years prior to the consultation.Abdominal computed tomography(CT)showed a 1.3 cm midline mass in the lower abdomen with infiltration into the rectus abdominis muscle.There was no sign of metastasis(T1N0M0).An incisional biopsy identified sporadic MTT of the lower abdomen.A comprehensive surgical excision with a 3 cm margin inclusive of the peritoneum was executed.Subse-quently,the general surgeon utilized an approach akin to the open peritoneal onlay mesh technique.The patient underwent additional treatment with an excision shaped as a mini-abdominoplasty for the skin defect.No complications arose,and annual follow-up CTs did not show signs of recurrence or metastasis.CONCLUSION An abdominal MTT was efficaciously treated with extensive excision and abdominal wall reconstruction,eliminating the need for postoperative radiotherapy.展开更多
The cavity with lid-driven is greatly used in mixing,coating,and drying applications and is a substantial issue in the study of thermal performance rate and fluid field.A numerical approach is presented to study the t...The cavity with lid-driven is greatly used in mixing,coating,and drying applications and is a substantial issue in the study of thermal performance rate and fluid field.A numerical approach is presented to study the thermal distribution and passage of fluid in a lid-driven cavity with an upper oscillating surface and an attached baffle.The walls of a cavity at the left and right were maintained at 350 and 293 K,respectively.The upper oscillating surface was equipped with a variable height to baffle to increase the convection of the three kinds of TiO_(2),Al_(2)O_(3),andCuO nanofluids with various of 0.4,0.8,and 0.4,0.8,and 1.2 vol.%in volume fractions.It was found that using a baffle attached to the oscillating upper surface of the cavity will lead to improving the distribution of vorticity in the cavity and increase the stream in the cavity.Also,increasing the baffle height,oscillating velocity,and volume fraction of nanoparticles contributes to enhancing the Nusselt number values by 50%for increasing baffle height from h∗=0.1 to 0.1.Also,the Nu improved by 20%for increasing oscillating velocity from w=05 to 20 rad/s and by 12%for using Al_(2)O_(3)nanofluid instead of TiO3 atϕ=0.8 vol.%.展开更多
基金National Science and Technology Support Program of China under Grant No.2011BAJ08B02Natural Science Foundation of Beijing under Grant No.8132016Beijing City University Youth Backbone Talent Training Project under Grant No.PHR201108009
文摘In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concealed bracing detail. The four tested structures included one normal concrete model, one recycled coarse aggregate concrete model, and two recycled coarse and fi ne aggregate concrete models with or without concealed bracings inside the shear walls. The dynamic characteristics, dynamic response and failure mode of each model were compared and analyzed. Finite element models were also developed and nonlinear time-history response analysis was conducted. The test and analysis results show that the seismic performance of the recycled coarse aggregate concrete frame-shear wall structure is slightly worse than the normal concrete structure. The seismic resistance capacity of the recycled concrete frame-shear wall structure can be greatly improved by setting up concealed bracings inside the walls. With appropriate design, the recycled coarse aggregate concrete frame-shear wall structure and recycled concrete structure with concealed bracings inside the walls can be applied in buildings.
基金supported by the National Natural Science Foundation of China (32170367 and 32000146)the Fundamental Research Funds for the Central Universities, China (2021TS066 and GK202103063)the Excellent Graduate Training Program of Shaanxi Normal University, China (LHRCCX23181).
文摘Cotton is one of the most important economic crops in the world,and it is a major source of fiber in the textile industry.Strigolactones(SLs)are a class of carotenoid-derived plant hormones involved in many processes of plant growth and development,although the functions of SL in fiber development remain largely unknown.Here,we found that the endogenous SLs were significantly higher in fibers at 20 days post-anthesis(DPA).Exogenous SLs significantly increased fiber length and cell wall thickness.Furthermore,we cloned three key SL biosynthetic genes,namely GhD27,GhMAX3,and GhMAX4,which were highly expressed in fibers,and subcellular localization analyses revealed that GhD27,GhMAX3,and GhMAX4 were localized in the chloroplast.The exogenous expression of GhD27,GhMAX3,and GhMAX4 complemented the physiological phenotypes of d27,max3,and max4 mutations in Arabidopsis,respectively.Knockdown of GhD27,GhMAX3,and GhMAX4 in cotton resulted in increased numbers of axillary buds and leaves,reduced fiber length,and significantly reduced fiber thickness.These findings revealed that SLs participate in plant growth,fiber elongation,and secondary cell wall formation in cotton.These results provide new and effective genetic resources for improving cotton fiber yield and plant architecture.
基金funded by the National Natural Science Foundation of China(32072022)the Nanfan Special Project,CAAS(YBXM07)the Hainan Yazhou Bay Seed Laboratory,China(B23CJ0208)。
文摘The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylesterification.Despite the recognized importance of pectin methylesterification in seed germination,the specific mechanisms that govern this process remain unclear.In this study,we demonstrated that the overexpression of GhPMEI53is associated with a decrease in PME activity and an increase in pectin methylesterification.This leads to seed cell wall softening,which positively regulates cotton seed germination.AtPMEI19,the homologue in Arabidopsis thaliana,plays a similar role in seed germination to GhPMEI53,indicating a conserved function and mechanism of PMEI in seed germination regulation.Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength.Additionally,the pathways of abscicic acid(ABA)and gibberellin(GA)in the transgenic materials showed significant changes,suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination.In summary,GhPMEI53 and its homologs alter the mechanical properties of cell walls,which influence the mechanical resistance of the endosperm or testa.Moreover,they impact cellular phytohormone pathways(e.g.,ABA and GA)to regulate seed germination.These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction,and contribute to a more comprehensive understanding of the PME/PMEI gene superfamily in plants.
基金the Program of State Key Laboratory of Food Science and Technology,Nanchang University (SKLF-ZZB-202119)。
文摘The nutrient digestion,absorption and biological activity of bee pollen may be limited due to the complex pollen wall.Here,the effect of superfine grinding technology on the release of nutrients from bee pollen were investigated,and their antioxidant activities and in vitro digestion were explored in this study.Results showed that the content of nutrients in bee pollen increased after wall disruption.Among them,fat content increased by 22.55%-8.31%,protein content increased by 0.54%-4.91%,starch content increased by 36.31%-48.64%,soluble sugar content increased by 20.57%-29.67%,total phenolic acid content increased by 11.73%-86.98%and total flavonoids content increased by 14.29%-24.79%.At the same time,the antioxidant activity increased by 14.84%-46.00%.Furthermore,the active components such as phenolic compounds in the wall-disruption bee pollen were more readily to be released during the in vitro digestion,and easier to be absorbed because of their higher bioaccessibility.Antioxidant activities during in vitro digestion were also improved in walldisruption bee pollen.These findings provide evidence that bee pollen wall disruption was suggested,thus,it is more conducive to exerting the value of bee pollen in functional foods.
基金This research work was financially supported by the National Natural Science Foundation of China(Grant Nos.52078182 and 41877255)the Tianjin Municipal Natural Science Foundation(Grant No.20JCYBJC00630).Their financial support is gratefully acknowledged.
文摘To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed.
基金funding support from National Natural Science Foundation of China(Grant No.52179109)Jiangsu Provincial Natural Science Foundation(Grant No.BK20230967)Open Research Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University(Grant No.KF2022-02).
文摘Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.
基金supported by the National Natural Science Foundation of China(Grant No.42307218)the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University),Ministry of Education(Grant No.2022P08)the Natural Science Foundation of Zhejiang Province(Grant No.LTZ21E080001).
文摘Data-driven approaches such as neural networks are increasingly used for deep excavations due to the growing amount of available monitoring data in practical projects.However,most neural network models only use the data from a single monitoring point and neglect the spatial relationships between multiple monitoring points.Besides,most models lack flexibility in providing predictions for multiple days after monitoring activity.This study proposes a sequence-to-sequence(seq2seq)two-dimensional(2D)convolutional long short-term memory neural network(S2SCL2D)for predicting the spatiotemporal wall deflections induced by deep excavations.The model utilizes the data from all monitoring points on the entire wall and extracts spatiotemporal features from data by combining the 2D convolutional layers and long short-term memory(LSTM)layers.The S2SCL2D model achieves a long-term prediction of wall deflections through a recursive seq2seq structure.The excavation depth,which has a significant impact on wall deflections,is also considered using a feature fusion method.An excavation project in Hangzhou,China,is used to illustrate the proposed model.The results demonstrate that the S2SCL2D model has superior prediction accuracy and robustness than that of the LSTM and S2SCL1D(one-dimensional)models.The prediction model demonstrates a strong generalizability when applied to an adjacent excavation.Based on the long-term prediction results,practitioners can plan and allocate resources in advance to address the potential engineering issues.
基金funded by Key R&D Projects in Hubei Province (Grant No.2020BCA084)Innovative Group Project of Hubei Natural Science Foundation (Grant No.2020CFA043)。
文摘Prototype experiments were carried out on the explosion-proof performance of the RC blast wall.The mass of TNT detonated in the experiments is 5 kg and 20 kg respectively.The shock wave overpressure was tested in different regions.The above experiments were numerically simulated,and the simulated shock wave overpressure waveforms were compared with that tested and given by CONWEP program.The results show that the numerically simulated waveform is slightly different from the test waveform,but similar to CONWEP waveform.Through dimensional analysis and numerical simulation under different working conditions,the equation for the attenuation rate of the diffraction overpressure behind the blast wall was obtained.According to the corresponding standards,the degree of casualties and the damage degree of the brick concrete building at a certain distance behind the wall can be determined when parameters are set.The above results can provide a reference for the design and construction of the reinforced concrete blast wall.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 20720210030)the National Natural Science Foundation of China (Grant No. 11204255)。
文摘Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the frequencies of SW modes and the corresponding DW modes are consistent with each other if they have the same node number along the width direction. This consistency is more pronounced in wide and thin nanostrips, favoring the DW motion driven by SWs.Further analysis of the moving behavior of a DW driven by SWs is also carried out. The average DW speed can reach a larger value of ~ 140 m/s under two different SW sources. We argue that this study is very meaningful for the potential application of DW motion driven by SWs.
基金National Key Research and Development Program of China under Grant No.2018YFC0705602。
文摘Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during the rocking process.An innovative RW with a curved interface is proposed to prevent interfacial corners from producing local damage,enhancing its earthquake resilient performance(ERP).The precast wall panel with a curved interface is assembled into an integral self-centering hybrid rocking wall(SCRW)by two post-tensioned unbonded prestressed tendons.Moreover,two ordinary energy dissipation steel rebars and two shear reinforcements are arranged to increase the energy dissipation capacity and lateral resistance.Two SCRW specimens and one monolithic reinforced concrete(RC)shear wall(SW)were tested under pseudo-static loading to compare the ERPs of the proposed SCRW and the SW,focusing on studying the effect of the curved interface on the SCRW.The key resilient performance of rocking effects,failure modes,and hysteretic properties of the SCRW were explored.The results show that nonlinear deformations of the SCRW are concentrated along the interface between the SCRW and the foundation,avoiding damage within the SCRW.The restoring force provided by the prestressed tendons can effectively realize self-centering capacity with small residual deformation,and the resilient performance of the SCRW is better than that of monolithic SW.In addition,the curved interface of the SCRW makes the rocking center change and move inward,partially relieving the stress concentration and crush of concrete.The rocking range of the rocking center is about 41.4%of the width of the SCRW.
基金supported by National Natural Science Foundation of China(12172308)National Key Research and Development Program of China(2020YFA0710902).
文摘Combining the detached eddy simulation(DES)method and Ffowcs Williams-Hawkings(FW-H)equation,the effect of bogie cavity end wall inclination on the flow field and aerodynamic noise in the bogie region is numerically studied.First,the simulation is conducted based on a simplified cavity-bogie model,including five cases with different inclination angles of the front and rear walls of the cavity.By comparing and analyzing the flow field and acoustic results of the five cases,the influence of the regularity and mechanism of the bogie cavity end wall inclination on the flow field and the aerodynamic noise of the bogie region are revealed.Then,the noise reduction strategy determined by the results of the simplified cavity-bogie model is applied to a three-car marshaling train model to verify its effectiveness when applied to the real train.The results reveal that the forward inclination of the cavity front wall enlarges the influence area of shear vortex structures formed at the leading edge of the cavity and intensifies the interaction between the vortex structures and the front wheelset,frontmotor,and front gearbox,resulting in the increase of the aerodynamic noise generated by the bogie itself.The backward inclination of the cavity rear wall is conducive to guiding the vortex structures flow out of the cavity and weakening the interaction between the shear vortex structures and the cavity rear wall,leading to the reduction of the aerodynamic noise generated by the bogie cavity.Inclining the rear end wall of the foremost bogie cavity of the head car is a feasible aerodynamic noise reduction measure for high-speed trains.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2022YFE03090000 and 2022YFE03060002)National Natural Science Foundation of China(No.12375214)+3 种基金China National Nuclear Corporation Fundamental Research Program(No.CNNC-JCYJ-202236)Innovation Program of Southwestern Institute of Physics(No.202301XWCX006-04)supported by Youth Science and Technology Innovation Team of Sichuan Province(No.2022JDTD0003)US DoE Office of Science(Nos.DE-FG02-95ER54309 and DE-FC02-04ER54698)。
文摘Effects of three-dimensional(3D)magnetic field perturbations due to feedback control of an unstable n=1(n is toroidal mode number)resistive wall mode(RWM)on the energetic particle(EP)losses are systematically investigated for the HL-3 tokamak.The MARS-F(Liu et al 2000 Phys.Plasmas 73681)code,facilitated by the test particle guiding center tracing module REORBIT,is utilized for the study.The RWM is found to generally produce no EP loss for cocurrent particles in HL-3.Assuming the same perturbation level at the sensor location for the close-loop system,feedback produces nearly the same loss of counter-current EPs compared to the open-loop case.Assuming however that the sensor signal is ten times smaller in the close-loop system than the open-loop counter part(reflecting the fact that the RWM is more stable with feedback),the counter-current EP loss is found significantly reduced in the former.Most of EP losses occur only for particles launched close to the plasma edge,while particles launched further away from the plasma boundary experience much less loss.The strike points of lost EPs on the HL-3 limiting surface become more scattered for particles launched closer to the plasma boundary.Taking into account the full gyro-orbit of particles while approaching the limiting surface,REORBIT finds slightly enhanced loss fraction.
基金supported by the foundation of“Cold area new energy service engineering laboratory battery pack comprehensive test system”from Jilin Provincial Development and Reform Commission(2020C021-6)the National Natural Science Foundation of China(NNSFC,No.52371109).
文摘In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automobiles.Previously,the application of Mg alloys in automobiles,especially in automotive cockpit components,is quite extensive,while it has almost disappeared for a period of time due to its relatively high cost,causing a certain degree of information loss in the application technology of Mg alloy parts in automobiles.The rapid development of automotive technology has led to a higher requirement for the automotive components compared with those traditional one.Therefore,whatever the components themselves,or the Mg alloy materials and die casting process have to face an increasing challenge,needing to be upgraded.In addition,owing to its high integration characteristics,the application of Mg alloy die casting technology in large-sized and thin-walled automotive parts has inherent advantages and needs to be expanded urgently.Indeed,it necessitates exploring advance Mg alloys and new product structures and optimizing die casting processes.This article summarizes and analyzes the development status of thin-walled and large-sized die casting Mg alloy parts in passenger car cockpit and corresponding material selection methods,die casting processes as well as mold design techniques.Furthermore,this work will aid researchers in establishing a comprehensive understanding of the manufacture of thin-walled and large-sized die casting Mg alloy parts in automobile cockpit.It will also assist them in developing new Mg alloys with improved comprehensive performance and new processes to meet the high requirements for die casting automotive components.
文摘The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft.
文摘H-steel all-bolted connection steel frame structures with heat preservation and decoration composite wall boards were investigated and the seismic performances of three scaled specimens were studied.The failure modes,hysteresis curves,bearing capacity,ductility,energy dissipation capacity,stiffness degradation and strain distribution were discussed.The calculation method of structural theoretical internal force was presented.The results showed that the overall structural seismic performance was better,and the structural ductility met the demands of elastic-plastic inter-story drift angle for seismic design.The H-steel weak-axis connection structure obtained better energy dissipation capacity,and its bearing capacity and stiffness were slightly different from the strong-axis connection.The heat preservation and decoration performance of composite wallboard and the all-bolted connection of the steel frame realized prefabrication during the whole construction period.The plastic hinge of the steel beam can be moved outwards because of the L-angles,which effectively avoids stress concentration in joint areas and expands the plastic hinge range.The errors between the theoretical structural capacity calculated by the plastic analysis method and the test results were within 2.44%.In addition,structural failure mechanisms and bearing capacities were verified by the finite element(FE)analysis,and the effects of the main parameters on the structures were investigated.The FE verification results were the same as in the test.The research results provide theoretical support and technical guidance for the application of thermal insulation and decorative composite wall panels in H-shaped steel all-bolted steel frames.
基金supported by the Special Fund for the Youth Team of the Southwest Universities,China(SWUXJPY 202306)the Fundamental Research Funds for the Central Universities,China(SWU-KR23009)the National Natural Sciences Foundation of China(U2003209 and 31871539)。
文摘Abiotic and biotic stressors adversely affect plant survival,biomass generation,and crop yields.As the global availability of arable land declines and the impacts of global warming intensify,such stressors may have increasingly pronounced effects on agricultural productivity.Currently,researchers face the overarching challenge of comprehensively enhancing plant resilience to abiotic and biotic stressors.The secondary cell wall plays a crucial role in bolstering the stress resistance of plants.To increase plant resistance to stress through genetic manipulation of the secondary cell wall,we cloned a cell wall protein designated glycine-rich protein-like(GhGRPL)from cotton fibers,and found that it is specifically expressed during the period of secondary cell wall biosynthesis.Notably,this protein differs from its Arabidopsis homolog,AtGRP,since its glycine-rich domain is deficient in glycine residues.GhGRPL is involved in secondary cell wall deposition.Upregulation of GhGRPL enhances lignin accumulation and,consequently,the thickness of the secondary cell walls,thereby increasing the plant’s resistance to abiotic stressors,such as drought and salinity,and biotic threats,including Verticillium dahliae infection.Conversely,interference with GhGRPL expression in cotton reduces lignin accumulation and compromises that resistance.Taken together,our findings elucidate the role of GhGRPL in regulating secondary cell wall development through its influence on lignin deposition,which,in turn,reinforces cell wall robustness and impermeability.These findings highlight the promising near-future prospect of adopting GhGRPL as a viable,effective approach for enhancing plant resilience to abiotic and biotic stress factors.
基金supported by the Key Program of National Natural Science Foundation of China(No.U23A202579)the National Natural Science Foundation of China(No.42277187,42007276,41972297)the Natural Science Foundation of Hebei Province(No.D2021202002)。
文摘The presence of horizontal layered rocks in tunnel engineering significantly impacts the stability and strength of the surrounding rock mass,leading to floor heave in the tunnel.This study focused on preparing layered specimens of rock-like material with varying thickness to investigate the failure behaviors of tunnel floors.The results indicate that thin-layered rock mass exhibits weak interlayer bonding,causing rock layers near the surface to buckle and break upwards when subjected to horizontal squeezing.With an increase in the layer thickness,a transition in failure mode occurs from upward buckling to shear failure along the plane,leading to a noticeable reduction in floor heave deformation.The primary cause of significant deformation in floor heave is upward buckling failure.To address this issue,the study proposes the installation of a partition wall in the middle of the floor to mitigate heave deformation of the rock layers.The results demonstrate that the partition wall has a considerable stabilizing effect on the floor,reducing the zone of buckling failure and minimizing floor heave deformation.It is crucial for the partition wall to be sufficiently high to prevent buckling failure and ensure stability.Through simulation calculations on an engineering example,it is confirmed that implementing a partition wall can effectively reduce floor heave and enhance the stability of tunnel floor.
基金supported by Supported by the Science and Technology Research Program of the Institute of Mountain Hazards and Environment,CAS(IMHE-ZDRW-01)the National Natural Science Foundation of China,China(Grant Numbers:42077275&42271086)the Special Project of Basic Research-Key Project,Yunnan(Grant Number:202301AS070039).
文摘The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement concrete facing panels,and gravity-type earth-retaining walls.The finite element(FE)simulations utilized a 3D plane strain condition to model full-scale ER walls and numerous nonlinear dynamics analyses.The seismic performance of differentmodels,which includes reinforcement concrete panels and gravity-type and hollowprecast concrete ER walls,was simulated and examined using the FE approach.It also displays comparative studies such as stress distribution,deflection of the wall,acceleration across the wall height,lateral wall displacement,lateral wall pressure,and backfill plastic strain.Three components of the created ER walls were found throughout this research procedure.One is a granular reinforcement backfill,while the other is a wall-facing panel and base foundation.The dynamic response effects of varied earth-retaining walls have also been studied.It was discovered that the facing panel of the model significantly impacts the earthquake-induced displacement of ER walls.The proposed analytical model’s validity has been evaluated and compared with the reinforcement concrete facing panels,gravity-type ER wall,scientifically available data,and American Association of State Highway and Transportation Officials(AASHTO)guidelines results based on FE simulation.The results of the observations indicate that the hollow prefabricated concrete ER wall is the most feasible option due to its lower displacement and high-stress distribution compared to the two types.The methodology and results of this study establish standards for future analogous investigations and professionals,particularly in light of the increasing computational capabilities of desktop computers.
文摘BACKGROUND Malignant triton tumors(MTTs)comprise a subgroup of malignant peripheral nerve sheath tumors(MPNSTs)that exhibits rhabdomyosarcomatous differen-tiation and follow an aggressive course.MTTs are primarily located along peripheral nerves.Cases of MTTs in the abdominal wall have not been reported.MTT has a poorer prognosis than classic MPNSTs,and accurate diagnosis necessitates a keen understanding of the clinical history and knowledge of its differential diagnosis intricacies.Treatment for MTTs mirrors that for MPNSTs and is predominantly surgical.CASE SUMMARY A 49-year-old woman presented with a subcutaneous mass in her lower abdo-minal wall and a pre-existing surgical scar that had grown slowly over 3-4 months before the consultation.She had previously undergone radical hysterectomy and concurrent chemo-radiotherapy for cervical cancer approximately 5 years prior to the consultation.Abdominal computed tomography(CT)showed a 1.3 cm midline mass in the lower abdomen with infiltration into the rectus abdominis muscle.There was no sign of metastasis(T1N0M0).An incisional biopsy identified sporadic MTT of the lower abdomen.A comprehensive surgical excision with a 3 cm margin inclusive of the peritoneum was executed.Subse-quently,the general surgeon utilized an approach akin to the open peritoneal onlay mesh technique.The patient underwent additional treatment with an excision shaped as a mini-abdominoplasty for the skin defect.No complications arose,and annual follow-up CTs did not show signs of recurrence or metastasis.CONCLUSION An abdominal MTT was efficaciously treated with extensive excision and abdominal wall reconstruction,eliminating the need for postoperative radiotherapy.
文摘The cavity with lid-driven is greatly used in mixing,coating,and drying applications and is a substantial issue in the study of thermal performance rate and fluid field.A numerical approach is presented to study the thermal distribution and passage of fluid in a lid-driven cavity with an upper oscillating surface and an attached baffle.The walls of a cavity at the left and right were maintained at 350 and 293 K,respectively.The upper oscillating surface was equipped with a variable height to baffle to increase the convection of the three kinds of TiO_(2),Al_(2)O_(3),andCuO nanofluids with various of 0.4,0.8,and 0.4,0.8,and 1.2 vol.%in volume fractions.It was found that using a baffle attached to the oscillating upper surface of the cavity will lead to improving the distribution of vorticity in the cavity and increase the stream in the cavity.Also,increasing the baffle height,oscillating velocity,and volume fraction of nanoparticles contributes to enhancing the Nusselt number values by 50%for increasing baffle height from h∗=0.1 to 0.1.Also,the Nu improved by 20%for increasing oscillating velocity from w=05 to 20 rad/s and by 12%for using Al_(2)O_(3)nanofluid instead of TiO3 atϕ=0.8 vol.%.