A set of experimental apparatus on reverse circulation bit are developed, in order to lucubrate the mechanism of the new type reverse circulation bits, and the structure of the bits influencing the ability of taking c...A set of experimental apparatus on reverse circulation bit are developed, in order to lucubrate the mechanism of the new type reverse circulation bits, and the structure of the bits influencing the ability of taking core and carrying powder.Both the major structure of the equipment and the procession of experiment are described.展开更多
Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electro...Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electrochemical extraction using different experimental apparatuses. This paper presents the development of a new closed two-dimensional(2D) apparatus that can better simulate the field application of the technology and accurately monitor the most important electrochemical parameters to understand the process. The innovative features of the new apparatus include the outer and inner electrodes designed to apply a non-uniform electrical field across the specimen as in the field electrochemical remediation process, the probes installed to measure the 2D distribution of electrical voltage, and the gas and fluid volume measurement devices used to accurately monitor the gas generation and electroosmotic flow rates at both electrodes as a function of time. The components of this new apparatus and the features of each component are described. The operating procedure and some typical results from three experiments with the apparatus are demonstrated. The results show that the variation of the gas generation rate is in good agreement with the electric current. Their relation provides a valid evaluation for electrochemical behavior of the system and Faraday's laws of electrolysis. The 2D profiles of cadmium concentration and voltage distribution at the end of the experiment reveal the great effects of a non-uniform electrical field on the contaminant mobilization.展开更多
The shear strength of gas-hydrate-bearing reservoirs is one of the most important parameters used to study mechanical properties of gas-hydrate-bearing reservoirs. The shear strength of gas-hydrate- bearing reservoirs...The shear strength of gas-hydrate-bearing reservoirs is one of the most important parameters used to study mechanical properties of gas-hydrate-bearing reservoirs. The shear strength of gas-hydrate- bearing reservoirs changes with filling and cementation of gas hydrates, which will affect the wellbore and reservoir stability. Traditional shear tests could not be conducted on gas-hydrate-bearing core samples because the gas hydrates exist under a limited range of temperature and pressure conditions. This paper describes a novel shear apparatus for studying shear strength of gas-hydrate-bearing core samples under original reservoir conditions. The preparation of gas-hydrate-bearing core samples and subsequent shear tests are done in the same cell. Cohesion and internal friction angle of the core samples with different saturations of gas hydrates were measured with the apparatus. The effect of gas hydrates on the shear strength of reservoirs was quantitatively analyzed. This provides a foundation for studying wellbore and reservoir stability of gas-hydrate-bearing reservoirs.展开更多
Carbon dioxide(CO2) geosequestration in deep saline aquifers has been currently deemed as a preferable and practicable mitigation means for reducing anthropogenic greenhouse gases(GHGs) emissions to the atmosphere, as...Carbon dioxide(CO2) geosequestration in deep saline aquifers has been currently deemed as a preferable and practicable mitigation means for reducing anthropogenic greenhouse gases(GHGs) emissions to the atmosphere, as deep saline aquifers can offer the greatest potential from a capacity point of view. Hence,research on core-scale CO2/brine multiphase migration processes is of great significance for precisely estimating storage efficiency, ensuring storage security, and predicting the long-term effects of the sequestered CO2in subsurface saline aquifers. This review article initially presents a brief description of the essential aspects of CO2subsurface transport and geological trapping mechanisms, and then outlines the state-of-the-art laboratory core flooding experimental apparatus that has been adopted for simulating CO2injection and migration processes in the literature over the past decade. Finally, a summary of the characteristics, components and applications of publicly reported core flooding equipment as well as major research gaps and areas in need of further study are given in relevance to laboratory-scale core flooding experiments in CO2geosequestration under reservoir conditions.展开更多
An experiment for rocket engine inducer cavitating flow is conducted on a new experimental platform.The experiment platform,using water as working medium,can be used to investigate the steady and unsteady flows of cav...An experiment for rocket engine inducer cavitating flow is conducted on a new experimental platform.The experiment platform,using water as working medium,can be used to investigate the steady and unsteady flows of cavitating and noncavitating turbopumps.The experimental platform is designed as a flexible and versatile apparatus for any kind of fluid dynamic phenomena relating to high performance liquid rocket engine turbopumps.Design details for the platform is introduced.Various extend of cavitation images and dynamic pressure impulse are obtained,which provides a reference for cavitating flow study in rocket engine inducer.展开更多
We repeated Saxl’s electrically charged pendulum experiment with an accuracy about one order higher.We found.no anomalous period change reported by him.Further experiment research shows that his result could be expla...We repeated Saxl’s electrically charged pendulum experiment with an accuracy about one order higher.We found.no anomalous period change reported by him.Further experiment research shows that his result could be explained if there were the affection of a capacitance between the pendulum disk and other part of the apparatus in his experiment.展开更多
Hot tearing is often a major casting defect in magnesium alloys and has a significant impact on the quality of their casting products.Hot tearing of magnesium alloys is a complex solidification phenomenon which is sti...Hot tearing is often a major casting defect in magnesium alloys and has a significant impact on the quality of their casting products.Hot tearing of magnesium alloys is a complex solidification phenomenon which is still not fully understood,it is of great importance to investigate the hot tearing behaviour of magnesium alloys.This review attempts to summarize the investigations on hot tearing of magnesium alloys over the past decades.The hot tearing criteria including recently developed Kou’s criterion are summarized and compared.The numeric simulation and assessing methods of hot tearing,factors influencing hot tearing,and hot tearing susceptibility(HTS)of magnesium alloys are discussed.展开更多
Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its ph...Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its physical properties and the migration of CO2 will be affected by many factors.Accurately understanding these changes and migration characteristics of CO2 is crucial for selecting a CCUS project site,estimating storage capacity and ensuring storage security.In this paper,the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technologies are briefly introduced in the context of laboratory experiments related to CCUS.The types of NMR apparatus,experimental samples and testing approaches applied worldwide are discussed and analyzed.Then two typical NMR core analysis systems used in CCUS field and a self-developed high-pressure,low-field NMR rock core flooding experimental system are compared.Finally,a summary of the current deficiencies related to NMR applied to CCUS field is given and future research plans are proposed.展开更多
Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rock...Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rockslides.Two types of sliding-prone geostructure models,i.e.the fault control type in orogenic belt and the fold control type in platform area,are proposed.Then,large-scale experimental apparatus and associated numerical simulations are conducted to understanding the chain-style dynamics of rockslide-debris avalanche-debris flow.The results reveal the fragmentation effects,the rheological behaviors and the boundary layer effect of long-runout avalanche-debris flow.The dynamic character-istics of quasi-static-transition-inertia state and solid-liquid coupling in rapid movement of rockslide-debris avalanche-debris flow are investigated.Finally,the risk mitigation strategy of the non-structure and structure for resilient energy dissipation are illustrated for initiation,transition and deposition zones.The structural prevention and mitigation methods have been successfully applied to the high-altitude and long-runout rockslides in Zhouqu and Maoxian of the Wenchuan earthquake zone,as well as the other major geohazards in Qinghai-Tibet Plateau and its adjacent areas.展开更多
The seismic waves induced by underground explosions generate geological hazards affecting deep buried tunnels such as rockbursts and engineering-induced earthquakes. This issue is difficult to study through full-scale...The seismic waves induced by underground explosions generate geological hazards affecting deep buried tunnels such as rockbursts and engineering-induced earthquakes. This issue is difficult to study through full-scale testing due to the expense and unpredictable danger. To solve this problem, the authors developed experimental apparatus and presented a laboratory method to simulate seismic waves induced by underground explosions. In this apparatus, a combined structure of a diffusive-shaped water capsule and a special-shaped oil capsule was designed. This structure can provide an applied confining stress and freely transmit the stress wave generated by external impact. Therefore, the coupled loading of in situ stress and seismic waves induced by underground explosions in the deep rock mass was simulated. The positive pressure time and peak value of the stress wave could be adjusted by changing the pulse-shaper and the initial impact energy. The obtained stress waves in the experiments correspond to that generated by 0.15-120 kt of TNT equivalent explosion at a scaled distance of 89.9-207.44 m/kt.展开更多
In 1987, the Montreal Protocol prohibited the worldwide use and production of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) and hydro fluorocarbons (HFCs) were proposed as alternative refrigerants. U...In 1987, the Montreal Protocol prohibited the worldwide use and production of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) and hydro fluorocarbons (HFCs) were proposed as alternative refrigerants. Unfortunately, HFCs have non negligible global warning potential and therefore new refrigerants must be proposed or old refrigerants must be used associated with HFC. Accurate experimental thermodynamic data and predictive techniques are required for better under-standing of the performance of the newly proposed refrigerants. In this communication, experimental techniques based on either analytic or synthetic methods are first described. Data are reported. Then two newly developed predictive models based on thermodynamic approach with the isofugacity criterion and artificial neural network method are presented. The results can provide better evaluation of refrigerants, especially with the aim of studying global warning effects.展开更多
An improved mathematical model for the continuous vacuum drying of highly viscous and heatsensitive foodstuffs was proposed, The process of continuous vacuum drying was presented as a moving boundary problem of moistu...An improved mathematical model for the continuous vacuum drying of highly viscous and heatsensitive foodstuffs was proposed, The process of continuous vacuum drying was presented as a moving boundary problem of moisture evaporation in cylindrical coordinates. Boundary condition of the first kind for the known functional dependence of the drying body surface temperature on time was considered. Finally, the appropriate system of differential equations was solved numerically and the values of drying rate, integral moisture content of the material, moving boundary position as well as temperature in any point of the material and at any moment time were obtained. This procedure was applied to continuous vacuum drying of foods such as natural cheese and fresh meat paste.展开更多
To improve the uniformity of the flow when fertilizer apparatus discharges fertilizer,a kind of fertilizer apparatus owned arc gears was designed.Also,the design and working principle of its general structure and key ...To improve the uniformity of the flow when fertilizer apparatus discharges fertilizer,a kind of fertilizer apparatus owned arc gears was designed.Also,the design and working principle of its general structure and key components were analyzed theoretically.Aiming at exploring the influence of arc structural parameters to the performance of arc gears discharging fertilizer,DEM simulation was used in this study.Fertilizer apparatus owned arc gears was taken as the research object to analyze the influence of two key components including the arc radius of gears’concave-grooves and the minimal length between two mutual meshing gears.The variation coefficient of fertilizer discharging amount stability and the linear determined coefficient of fertilizer discharging amount in unit time as evaluation index were selected.Two factors and five levels quadratic rotation orthogonal experiment was applied,and Design-Expert 8.0 software was used to achieve data processing and analysis.The results of experiment indicated that the arc radius of gears’concave-grooves had significant effect on the linear determined coefficient of fertilizer discharging amount in unit time,and the minimal length between two mutual meshing gears had significant effect on the variation coefficient of fertilizer discharging amount stability.The optimum structural parameters were 8.54 mm as the arc radius of gears’concave-grooves and 5.22 mm as the minimal length between two mutual meshing gears.Upon this circumstance,the variation coefficient was 0.28 and determination coefficient was 0.9972.The optimum apparatus was selected to conduct the bench test and field simulation test.The results indicated that the variation coefficient is 0.27,and the linear determined coefficient of is 0.9980.The results of simulation experiment were anastomotic basically with the real result,which showed that DEM simulation technology was usable to the experiment of testing fertilizer discharging.The results of this research can provide a reference to the improving of performance in discharging fertilizer.展开更多
In the traditional fertilization method,a large amount of fertilizer is applied,which causes congestion easily.It is not conducive to the sustainable development of agriculture.In this work,a vertical pneumatic fertil...In the traditional fertilization method,a large amount of fertilizer is applied,which causes congestion easily.It is not conducive to the sustainable development of agriculture.In this work,a vertical pneumatic fertilization system with a spiral Geneva mechanism was designed according to the operational requirements of variable-rate and smooth fertilization.The uniformity in discharging fertilizer with different spiral angles was simulated and analyzed by extended discrete element method(EDEM)based simulation software,from where the spiral angle of the fertilizer discharge wheel was determined to be 45°.The fertilization system includes a fertilizer apparatus with a spiral Geneva mechanism,whose optimal performance parameters were obtained from the bench experiment.The accuracy and uniformity of the fertilizer application system were taken as the evaluation indicators.The linear relationships of the discharged amount of fertilizer with the rotational speed and the opening of the fertilizer discharging wheel were verified by both static blowing fertilization and field experiments.The static blowing experimental results show that the discharged amount of fertilizer has a high linear correlation and accuracy with both the opening and rotational speed,and the highest correlation occurs with the rotational speed.The rotational speed and opening have significant effects on the discharged amount of fertilizer and the average coefficient of variation.The effect of the rotational speed was the most significant.According to the model obtained by multiple regression fittings,the optimal parameters were determined when the average coefficient of variation was small,the rotational speed was 15.9 r/min and the opening was 34.4 mm.Therefore,the purpose of precise fertilization can be achieved by adjusting the opening or rotational speed in a way to get the exact amount of fertilizer discharged as required by the corresponding crops.The field experiment showed that the variation coefficient of each fertilizer discharged decreases first and then increases with an increasing opening under different rotational speeds,which is consistent with the theoretical value.When the opening was 40 mm or 50 mm,the variation coefficient reached the minimum value,which is far less than the qualified index of 7.8%.In the static blowing experiment and the dynamic field experiment,the stability of the fertilizer discharging device can be significantly enhanced with the utilization of the pneumatic conveying fertilizer.This study can provide a theoretical reference for parameter selection and optimization of vertical spiral fertilization systems.展开更多
基金Supported by Jilin Science & Technology leading Development No. 20045033
文摘A set of experimental apparatus on reverse circulation bit are developed, in order to lucubrate the mechanism of the new type reverse circulation bits, and the structure of the bits influencing the ability of taking core and carrying powder.Both the major structure of the equipment and the procession of experiment are described.
基金Supported by the National Natural Science Foundation of China(41201303,20807028,41372262)the Fundamental Research for the Central Universities(14CX02052A,14CX02191A)+1 种基金the Qingdao Science and Technology Program for young scientists(14-2-4-86-jch)the State Key Laboratory of Pollution Control and Resource Reuse Foundation(PCRRF13023)
文摘Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electrochemical extraction using different experimental apparatuses. This paper presents the development of a new closed two-dimensional(2D) apparatus that can better simulate the field application of the technology and accurately monitor the most important electrochemical parameters to understand the process. The innovative features of the new apparatus include the outer and inner electrodes designed to apply a non-uniform electrical field across the specimen as in the field electrochemical remediation process, the probes installed to measure the 2D distribution of electrical voltage, and the gas and fluid volume measurement devices used to accurately monitor the gas generation and electroosmotic flow rates at both electrodes as a function of time. The components of this new apparatus and the features of each component are described. The operating procedure and some typical results from three experiments with the apparatus are demonstrated. The results show that the variation of the gas generation rate is in good agreement with the electric current. Their relation provides a valid evaluation for electrochemical behavior of the system and Faraday's laws of electrolysis. The 2D profiles of cadmium concentration and voltage distribution at the end of the experiment reveal the great effects of a non-uniform electrical field on the contaminant mobilization.
基金support from"Preliminary Research on natural gas hydrates production"from SINOPEC(No.P06070)
文摘The shear strength of gas-hydrate-bearing reservoirs is one of the most important parameters used to study mechanical properties of gas-hydrate-bearing reservoirs. The shear strength of gas-hydrate- bearing reservoirs changes with filling and cementation of gas hydrates, which will affect the wellbore and reservoir stability. Traditional shear tests could not be conducted on gas-hydrate-bearing core samples because the gas hydrates exist under a limited range of temperature and pressure conditions. This paper describes a novel shear apparatus for studying shear strength of gas-hydrate-bearing core samples under original reservoir conditions. The preparation of gas-hydrate-bearing core samples and subsequent shear tests are done in the same cell. Cohesion and internal friction angle of the core samples with different saturations of gas hydrates were measured with the apparatus. The effect of gas hydrates on the shear strength of reservoirs was quantitatively analyzed. This provides a foundation for studying wellbore and reservoir stability of gas-hydrate-bearing reservoirs.
基金supported by the National Natural Science Foundation of China(Grant No.41274111)the financial support of the National Department Public Benefit Research Foundation of MLR,China(Grant No.201211063-4-1)the One Hundred Talent Program of CAS(Grant No.O931061C01)
文摘Carbon dioxide(CO2) geosequestration in deep saline aquifers has been currently deemed as a preferable and practicable mitigation means for reducing anthropogenic greenhouse gases(GHGs) emissions to the atmosphere, as deep saline aquifers can offer the greatest potential from a capacity point of view. Hence,research on core-scale CO2/brine multiphase migration processes is of great significance for precisely estimating storage efficiency, ensuring storage security, and predicting the long-term effects of the sequestered CO2in subsurface saline aquifers. This review article initially presents a brief description of the essential aspects of CO2subsurface transport and geological trapping mechanisms, and then outlines the state-of-the-art laboratory core flooding experimental apparatus that has been adopted for simulating CO2injection and migration processes in the literature over the past decade. Finally, a summary of the characteristics, components and applications of publicly reported core flooding equipment as well as major research gaps and areas in need of further study are given in relevance to laboratory-scale core flooding experiments in CO2geosequestration under reservoir conditions.
文摘An experiment for rocket engine inducer cavitating flow is conducted on a new experimental platform.The experiment platform,using water as working medium,can be used to investigate the steady and unsteady flows of cavitating and noncavitating turbopumps.The experimental platform is designed as a flexible and versatile apparatus for any kind of fluid dynamic phenomena relating to high performance liquid rocket engine turbopumps.Design details for the platform is introduced.Various extend of cavitation images and dynamic pressure impulse are obtained,which provides a reference for cavitating flow study in rocket engine inducer.
基金Supported by the National Natural Science Foundation of China.
文摘We repeated Saxl’s electrically charged pendulum experiment with an accuracy about one order higher.We found.no anomalous period change reported by him.Further experiment research shows that his result could be explained if there were the affection of a capacitance between the pendulum disk and other part of the apparatus in his experiment.
基金the National Natural Science Foundation of China(Project 51531002,51474043)the Ministry of Science&Technology of China(2013DFA71070)+1 种基金the Ministry of Education of China(SRFDR 20130191110018)Chongqing Municipal Government(CSTC2013JCYJC60001,CEC project,Two River Scholar Project and The Chief Scientist Studio Project).
文摘Hot tearing is often a major casting defect in magnesium alloys and has a significant impact on the quality of their casting products.Hot tearing of magnesium alloys is a complex solidification phenomenon which is still not fully understood,it is of great importance to investigate the hot tearing behaviour of magnesium alloys.This review attempts to summarize the investigations on hot tearing of magnesium alloys over the past decades.The hot tearing criteria including recently developed Kou’s criterion are summarized and compared.The numeric simulation and assessing methods of hot tearing,factors influencing hot tearing,and hot tearing susceptibility(HTS)of magnesium alloys are discussed.
基金supported by the Open Research Fund of State Key Laboratory of Geomechanics and GeotechnicalEngineering, IRSM, CAS (Grant No. Z017002)the National Natural Science Foundation of China (Grant Nos. 41872210 and 41274111)financial support from the China-Australia Geological Storage of CO_2 (CAGS) Project funded by the Australian Government under the auspices of the China-Australia Joint Coordination Group on Clean Coal Technology
文摘Carbon capture,utilization and storage (CCUS) is considered as a very important technology for mitigating global climate change.Carbon dioxide (CO2) injected into an underground reservoir will induce changes in its physical properties and the migration of CO2 will be affected by many factors.Accurately understanding these changes and migration characteristics of CO2 is crucial for selecting a CCUS project site,estimating storage capacity and ensuring storage security.In this paper,the basic principles of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technologies are briefly introduced in the context of laboratory experiments related to CCUS.The types of NMR apparatus,experimental samples and testing approaches applied worldwide are discussed and analyzed.Then two typical NMR core analysis systems used in CCUS field and a self-developed high-pressure,low-field NMR rock core flooding experimental system are compared.Finally,a summary of the current deficiencies related to NMR applied to CCUS field is given and future research plans are proposed.
基金This work was financially supported by National Natural Science Foundation of China(Grant Nos.U2244226,U2244227 and 42177172).
文摘Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rockslides.Two types of sliding-prone geostructure models,i.e.the fault control type in orogenic belt and the fold control type in platform area,are proposed.Then,large-scale experimental apparatus and associated numerical simulations are conducted to understanding the chain-style dynamics of rockslide-debris avalanche-debris flow.The results reveal the fragmentation effects,the rheological behaviors and the boundary layer effect of long-runout avalanche-debris flow.The dynamic character-istics of quasi-static-transition-inertia state and solid-liquid coupling in rapid movement of rockslide-debris avalanche-debris flow are investigated.Finally,the risk mitigation strategy of the non-structure and structure for resilient energy dissipation are illustrated for initiation,transition and deposition zones.The structural prevention and mitigation methods have been successfully applied to the high-altitude and long-runout rockslides in Zhouqu and Maoxian of the Wenchuan earthquake zone,as well as the other major geohazards in Qinghai-Tibet Plateau and its adjacent areas.
基金financial support from the National Natural Science Foundation of China (Grant Nos. 51527810,51679249, 12002171 and 51909120)Postgraduate Research&Practice Innovation Program of Jiangsu Province (Grant No.KYCX20_0312)。
文摘The seismic waves induced by underground explosions generate geological hazards affecting deep buried tunnels such as rockbursts and engineering-induced earthquakes. This issue is difficult to study through full-scale testing due to the expense and unpredictable danger. To solve this problem, the authors developed experimental apparatus and presented a laboratory method to simulate seismic waves induced by underground explosions. In this apparatus, a combined structure of a diffusive-shaped water capsule and a special-shaped oil capsule was designed. This structure can provide an applied confining stress and freely transmit the stress wave generated by external impact. Therefore, the coupled loading of in situ stress and seismic waves induced by underground explosions in the deep rock mass was simulated. The positive pressure time and peak value of the stress wave could be adjusted by changing the pulse-shaper and the initial impact energy. The obtained stress waves in the experiments correspond to that generated by 0.15-120 kt of TNT equivalent explosion at a scaled distance of 89.9-207.44 m/kt.
文摘In 1987, the Montreal Protocol prohibited the worldwide use and production of chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) and hydro fluorocarbons (HFCs) were proposed as alternative refrigerants. Unfortunately, HFCs have non negligible global warning potential and therefore new refrigerants must be proposed or old refrigerants must be used associated with HFC. Accurate experimental thermodynamic data and predictive techniques are required for better under-standing of the performance of the newly proposed refrigerants. In this communication, experimental techniques based on either analytic or synthetic methods are first described. Data are reported. Then two newly developed predictive models based on thermodynamic approach with the isofugacity criterion and artificial neural network method are presented. The results can provide better evaluation of refrigerants, especially with the aim of studying global warning effects.
文摘An improved mathematical model for the continuous vacuum drying of highly viscous and heatsensitive foodstuffs was proposed, The process of continuous vacuum drying was presented as a moving boundary problem of moisture evaporation in cylindrical coordinates. Boundary condition of the first kind for the known functional dependence of the drying body surface temperature on time was considered. Finally, the appropriate system of differential equations was solved numerically and the values of drying rate, integral moisture content of the material, moving boundary position as well as temperature in any point of the material and at any moment time were obtained. This procedure was applied to continuous vacuum drying of foods such as natural cheese and fresh meat paste.
基金The authors acknowledge that this work was financially supported by the National Key R&D Plan,China(Grant No.2018yfd0201001)the Fundamental Research Funds for the Central Universities,China(Grant No.2572020BF03).
文摘To improve the uniformity of the flow when fertilizer apparatus discharges fertilizer,a kind of fertilizer apparatus owned arc gears was designed.Also,the design and working principle of its general structure and key components were analyzed theoretically.Aiming at exploring the influence of arc structural parameters to the performance of arc gears discharging fertilizer,DEM simulation was used in this study.Fertilizer apparatus owned arc gears was taken as the research object to analyze the influence of two key components including the arc radius of gears’concave-grooves and the minimal length between two mutual meshing gears.The variation coefficient of fertilizer discharging amount stability and the linear determined coefficient of fertilizer discharging amount in unit time as evaluation index were selected.Two factors and five levels quadratic rotation orthogonal experiment was applied,and Design-Expert 8.0 software was used to achieve data processing and analysis.The results of experiment indicated that the arc radius of gears’concave-grooves had significant effect on the linear determined coefficient of fertilizer discharging amount in unit time,and the minimal length between two mutual meshing gears had significant effect on the variation coefficient of fertilizer discharging amount stability.The optimum structural parameters were 8.54 mm as the arc radius of gears’concave-grooves and 5.22 mm as the minimal length between two mutual meshing gears.Upon this circumstance,the variation coefficient was 0.28 and determination coefficient was 0.9972.The optimum apparatus was selected to conduct the bench test and field simulation test.The results indicated that the variation coefficient is 0.27,and the linear determined coefficient of is 0.9980.The results of simulation experiment were anastomotic basically with the real result,which showed that DEM simulation technology was usable to the experiment of testing fertilizer discharging.The results of this research can provide a reference to the improving of performance in discharging fertilizer.
基金The authors gratefully acknowledge the support was provided by the National Key Research and Development Program of China(Grant No.2017YFD0700700,2017YFD0700704,2016YFD0200600,2016YFD0200606,2018YFD0200700).
文摘In the traditional fertilization method,a large amount of fertilizer is applied,which causes congestion easily.It is not conducive to the sustainable development of agriculture.In this work,a vertical pneumatic fertilization system with a spiral Geneva mechanism was designed according to the operational requirements of variable-rate and smooth fertilization.The uniformity in discharging fertilizer with different spiral angles was simulated and analyzed by extended discrete element method(EDEM)based simulation software,from where the spiral angle of the fertilizer discharge wheel was determined to be 45°.The fertilization system includes a fertilizer apparatus with a spiral Geneva mechanism,whose optimal performance parameters were obtained from the bench experiment.The accuracy and uniformity of the fertilizer application system were taken as the evaluation indicators.The linear relationships of the discharged amount of fertilizer with the rotational speed and the opening of the fertilizer discharging wheel were verified by both static blowing fertilization and field experiments.The static blowing experimental results show that the discharged amount of fertilizer has a high linear correlation and accuracy with both the opening and rotational speed,and the highest correlation occurs with the rotational speed.The rotational speed and opening have significant effects on the discharged amount of fertilizer and the average coefficient of variation.The effect of the rotational speed was the most significant.According to the model obtained by multiple regression fittings,the optimal parameters were determined when the average coefficient of variation was small,the rotational speed was 15.9 r/min and the opening was 34.4 mm.Therefore,the purpose of precise fertilization can be achieved by adjusting the opening or rotational speed in a way to get the exact amount of fertilizer discharged as required by the corresponding crops.The field experiment showed that the variation coefficient of each fertilizer discharged decreases first and then increases with an increasing opening under different rotational speeds,which is consistent with the theoretical value.When the opening was 40 mm or 50 mm,the variation coefficient reached the minimum value,which is far less than the qualified index of 7.8%.In the static blowing experiment and the dynamic field experiment,the stability of the fertilizer discharging device can be significantly enhanced with the utilization of the pneumatic conveying fertilizer.This study can provide a theoretical reference for parameter selection and optimization of vertical spiral fertilization systems.