Motivated to obtain the second critical point of a nonlinear differential equation, which is expressed by derivatives of convex functional defined on a Banach space, an estimate with is given to see the relation ...Motivated to obtain the second critical point of a nonlinear differential equation, which is expressed by derivatives of convex functional defined on a Banach space, an estimate with is given to see the relation between f<sup>-1</sup>(0) and g<sup>-1</sup>(0). And both the Fréchet differentiability and the continuity of Fréchet derivative of every convex functional defined on an open subset of a Banach space are shown.展开更多
In the framework of Frechet spaces, we give a generalized vector-valued Ekeland's variational principle, where the perturbation involves the subadditive functions of countable generating semi-norms. By modifying and ...In the framework of Frechet spaces, we give a generalized vector-valued Ekeland's variational principle, where the perturbation involves the subadditive functions of countable generating semi-norms. By modifying and developing the method of Cammaroto and Chinni, we obtain a density theorem on extremal points of the vector-valued variational principle, which extends and improves the related known results.展开更多
In this paper we first introduce and investigate some special classes of nonlinear maps and get several useful results. Then, by using these results, we obtain analytic criteria for checking whether or not an operator...In this paper we first introduce and investigate some special classes of nonlinear maps and get several useful results. Then, by using these results, we obtain analytic criteria for checking whether or not an operator defined only on the exponential vectors of a symmetric Fock space becomes a Hilbert-Schmidt operator on the whole space. Additionally, as an application, we also get an analytic criterion for Hilbert-Schmidt operators on a Gaussian probability space through the Wiener-Ito-Segal isomorphism.展开更多
文摘Motivated to obtain the second critical point of a nonlinear differential equation, which is expressed by derivatives of convex functional defined on a Banach space, an estimate with is given to see the relation between f<sup>-1</sup>(0) and g<sup>-1</sup>(0). And both the Fréchet differentiability and the continuity of Fréchet derivative of every convex functional defined on an open subset of a Banach space are shown.
基金Supported by National Natural Science Foundation of China (Grant No.10871141)
文摘In the framework of Frechet spaces, we give a generalized vector-valued Ekeland's variational principle, where the perturbation involves the subadditive functions of countable generating semi-norms. By modifying and developing the method of Cammaroto and Chinni, we obtain a density theorem on extremal points of the vector-valued variational principle, which extends and improves the related known results.
基金Supported by National Natural Science Foundation of China(10171035)Natural Science Foundation of Gansu Province(ZS021-A25-004-Z) NWNU-KJCXGC-212
文摘In this paper we first introduce and investigate some special classes of nonlinear maps and get several useful results. Then, by using these results, we obtain analytic criteria for checking whether or not an operator defined only on the exponential vectors of a symmetric Fock space becomes a Hilbert-Schmidt operator on the whole space. Additionally, as an application, we also get an analytic criterion for Hilbert-Schmidt operators on a Gaussian probability space through the Wiener-Ito-Segal isomorphism.