针对现有电力系统短期负荷预测精度低、数据处理量大、易受输入变量的影响等问题,提出了一种将离散Fréchet距离与LS-SVM相结合的短期负荷预测方法。分析总结了East-Slovakia Power Distribution Company提供的历年负荷数据,结合该...针对现有电力系统短期负荷预测精度低、数据处理量大、易受输入变量的影响等问题,提出了一种将离散Fréchet距离与LS-SVM相结合的短期负荷预测方法。分析总结了East-Slovakia Power Distribution Company提供的历年负荷数据,结合该地区的用电规律,通过引入离散Fréchet距离,建立离散曲线相似性的数学模型,选取出与基准曲线形状相似的相似日,利用相似日负荷数据对LS-SVM预测模型进行训练。经过仿真验证,并与标准LS-SVM模型得到的结果对比,所提预测方法明显提高了预测精度。展开更多
文摘针对现有电力系统短期负荷预测精度低、数据处理量大、易受输入变量的影响等问题,提出了一种将离散Fréchet距离与LS-SVM相结合的短期负荷预测方法。分析总结了East-Slovakia Power Distribution Company提供的历年负荷数据,结合该地区的用电规律,通过引入离散Fréchet距离,建立离散曲线相似性的数学模型,选取出与基准曲线形状相似的相似日,利用相似日负荷数据对LS-SVM预测模型进行训练。经过仿真验证,并与标准LS-SVM模型得到的结果对比,所提预测方法明显提高了预测精度。