When A ∈ B(H) and B ∈ B(K) are given, we denote by Mc an operator acting on the Hilbert space HΘ K of the form Me = ( A0 CB). In this paper, first we give the necessary and sufficient condition for Mc to be a...When A ∈ B(H) and B ∈ B(K) are given, we denote by Mc an operator acting on the Hilbert space HΘ K of the form Me = ( A0 CB). In this paper, first we give the necessary and sufficient condition for Mc to be an upper semi-Fredholm (lower semi-Fredholm, or Fredholm) operator for some C ∈B(K,H). In addition, let σSF+(A) = {λ ∈ C : A-λI is not an upper semi-Fredholm operator} bc the upper semi-Fredholm spectrum of A ∈ B(H) and let σrsF- (A) = {λ∈ C : A-λI is not a lower semi-Fredholm operator} be the lower semi Fredholm spectrum of A. We show that the passage from σSF±(A) U σSF±(B) to σSF±(Mc) is accomplished by removing certain open subsets of σSF-(A) ∩σSF+ (B) from the former, that is, there is an equality σSF±(A) ∪σSF± (B) = σSF± (Mc) ∪& where L is the union of certain of the holes in σSF±(Mc) which ilappen to be subsets of σSF- (A) A σSF+ (B). Weyl's theorem and Browder's theorem are liable to fail for 2 × 2 operator matrices. In this paper, we also explore how Weyl's theorem, Browder's theorem, a-Weyl's theorem and a-Browder's theorem survive for 2 × 2 upper triangular operator matrices on the Hilbert space.展开更多
In this paper, we study weighted composition operators on the Hilbert space of Dirichlet series with square summable coefficients. The Hermitianness, Fredholmness and invertibility of such operators are characterized,...In this paper, we study weighted composition operators on the Hilbert space of Dirichlet series with square summable coefficients. The Hermitianness, Fredholmness and invertibility of such operators are characterized, and the spectra of compact and invertible weighted composition operators are also described.展开更多
文摘When A ∈ B(H) and B ∈ B(K) are given, we denote by Mc an operator acting on the Hilbert space HΘ K of the form Me = ( A0 CB). In this paper, first we give the necessary and sufficient condition for Mc to be an upper semi-Fredholm (lower semi-Fredholm, or Fredholm) operator for some C ∈B(K,H). In addition, let σSF+(A) = {λ ∈ C : A-λI is not an upper semi-Fredholm operator} bc the upper semi-Fredholm spectrum of A ∈ B(H) and let σrsF- (A) = {λ∈ C : A-λI is not a lower semi-Fredholm operator} be the lower semi Fredholm spectrum of A. We show that the passage from σSF±(A) U σSF±(B) to σSF±(Mc) is accomplished by removing certain open subsets of σSF-(A) ∩σSF+ (B) from the former, that is, there is an equality σSF±(A) ∪σSF± (B) = σSF± (Mc) ∪& where L is the union of certain of the holes in σSF±(Mc) which ilappen to be subsets of σSF- (A) A σSF+ (B). Weyl's theorem and Browder's theorem are liable to fail for 2 × 2 operator matrices. In this paper, we also explore how Weyl's theorem, Browder's theorem, a-Weyl's theorem and a-Browder's theorem survive for 2 × 2 upper triangular operator matrices on the Hilbert space.
基金partially supported by NSFC(11771340,11701434,11431011,11471251,11771441)
文摘In this paper, we study weighted composition operators on the Hilbert space of Dirichlet series with square summable coefficients. The Hermitianness, Fredholmness and invertibility of such operators are characterized, and the spectra of compact and invertible weighted composition operators are also described.
基金NNSF of China(10726043)Plan of The New Century Talented Person of Education Ministry(2006)the Fundamental Research Funds for the Central Universities(GK200901015)