Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic...Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic equations of the method are first set up, and then the mode cut-off principle and the dividing principle are proposed. MATLAB is used for simulation in different frame structures. The simulation results demonstrate the applicability of this substructure method to civil engineering structures and the correctness of the proposed mode cut-off principle. Studies are also conducted on how to divide the whole structure for better computation efficiency while maintaining better precision. It is observed that the geometry and material properties should be considered, and the synthesis results would be more precise when the inflection points of the mode shapes are taken into consideration. Furthermore, the simulation performed on a large-scale high-rise connected structure further proves the feasibility and efficiency of this modal synthesis method compared with the traditional global method. It is also concluded from the simulation results that the fewer number of DOFs in each substructure will result in better computation efficiency, but too many substructures will be time-consuming due to the tedious synthesis procedures. Moreover, the substructures with free interface will introduce errors and reduce the precision dramatically, which should be avoided.展开更多
The structures in engineering can be simplified into elastic beams with concentrated masses and elastic spring supports. Studying the law of vibration of the beams can be a help in guiding its design and avoiding reso...The structures in engineering can be simplified into elastic beams with concentrated masses and elastic spring supports. Studying the law of vibration of the beams can be a help in guiding its design and avoiding resonance. Based on the Laplace transform method, the mode shape functions and the frequency equations of the beams in the typical boundary conditions are derived. A cantilever beam with a lumped mass and a spring is selected to obtain its natural frequencies and mode shape functions. An experiment was conducted in order to get the modal parameters of the beam based on the NExT-ERA method. By comparing the analytical and experimental results, the effects of the locations of the mass and spring on the modal parameter are discussed. The variation of the natural frequencies was obtained with the changing stiffness coefficient and mass coefficient, respectively. The findings provide a reference for the vibration analysis methods and the lumped parameters layout design of elastic beams used in engineering.展开更多
Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unkno...Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unknown parameters can be identified.In order to identify physical parameters of vehicle in the case that all physical parameters are unknown,a methodology based on the State Variable Method(SVM) for physical parameter identification of two-axis on-road vehicle is presented.The modal parameters of the vehicle are identified by the SVM,furthermore,the physical parameters of the vehicle are estimated by least squares method.In numerical simulations,physical parameters of Ford Granada are chosen as parameters of vehicle model,and half-sine bump function is chosen to simulate tire stimulated by impulse excitation.The first numerical simulation shows that the present method can identify all of the physical parameters and the largest absolute value of percentage error of the identified physical parameter is 0.205%;and the effect of the errors of additional mass,structural parameter and measurement noise are discussed in the following simulations,the results shows that when signal contains 30 d B noise,the largest absolute value of percentage error of the identification is 3.78%.These simulations verify that the presented method is effective and accurate for physical parameter identification of two-axis on-road vehicles.The proposed methodology can identify all physical parameters of 7-DOF vehicle model by using free-decay responses of vehicle without need to assume some physical parameters are known.展开更多
The multidimensional modal theory proposed by Faltinsen, et al. (2000) is applied to solve liquid nonlinear free sloshing in right circular cylindrical tank for the first time. After selecting the leading modes and ...The multidimensional modal theory proposed by Faltinsen, et al. (2000) is applied to solve liquid nonlinear free sloshing in right circular cylindrical tank for the first time. After selecting the leading modes and fixing the order of magnitudes based on the Narimanov-Moiseev third order asymptotic hypothesis, the general infinite dimensional modal system is reduced to a five dimensional asymptotic modal system (the system of second order nonlinear ordinary differential equations coupling the generalized time dependent coordinates of free surface wave elevation). The numerical integrations of this modal system discover most important nonlinear phenomena, which agree well with both pervious analytic theories and experimental observations. The results indicate that the multidimensional modal method is a very good tool for solving liquid nonlinear sloshing dynamics and will be developed to investigate more complex sloshing problem in our following work.展开更多
In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The ...In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The study of plate behavior is a very sensitive subject because it is part of the structural elements. The study of the dynamic behavior of free vibration structures is done by modal analysis in order to calculate natural frequencies and modal deformations. In this paper, we present the modal analysis of a thin rectangular plate simply supported. The analytical solution of the differential equation is obtained by applying the method of separating the variables. We are talking about the exact solution of the problem to the limit values. However, numerical methods such as the finite element method allow us to approximate these functions with greater accuracy. It is one of the most powerful computational methods for predicting dynamic response in a complex structure subject to arbitrary boundary conditions. The results obtained by MEF through Ansys 15.0 are then compared with those obtained by the analytical method.展开更多
基金Supported by the National Natural Science Foundation of China(No.51108089)Doctoral Programs Foundation of Ministry of Education of China(No.20113514120005)the Foundation of the Education Department of Fujian Province(No.JA14057)
文摘Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic equations of the method are first set up, and then the mode cut-off principle and the dividing principle are proposed. MATLAB is used for simulation in different frame structures. The simulation results demonstrate the applicability of this substructure method to civil engineering structures and the correctness of the proposed mode cut-off principle. Studies are also conducted on how to divide the whole structure for better computation efficiency while maintaining better precision. It is observed that the geometry and material properties should be considered, and the synthesis results would be more precise when the inflection points of the mode shapes are taken into consideration. Furthermore, the simulation performed on a large-scale high-rise connected structure further proves the feasibility and efficiency of this modal synthesis method compared with the traditional global method. It is also concluded from the simulation results that the fewer number of DOFs in each substructure will result in better computation efficiency, but too many substructures will be time-consuming due to the tedious synthesis procedures. Moreover, the substructures with free interface will introduce errors and reduce the precision dramatically, which should be avoided.
基金Supported by the National Natural Science Foundation of China(51109034)
文摘The structures in engineering can be simplified into elastic beams with concentrated masses and elastic spring supports. Studying the law of vibration of the beams can be a help in guiding its design and avoiding resonance. Based on the Laplace transform method, the mode shape functions and the frequency equations of the beams in the typical boundary conditions are derived. A cantilever beam with a lumped mass and a spring is selected to obtain its natural frequencies and mode shape functions. An experiment was conducted in order to get the modal parameters of the beam based on the NExT-ERA method. By comparing the analytical and experimental results, the effects of the locations of the mass and spring on the modal parameter are discussed. The variation of the natural frequencies was obtained with the changing stiffness coefficient and mass coefficient, respectively. The findings provide a reference for the vibration analysis methods and the lumped parameters layout design of elastic beams used in engineering.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175157,U124208)
文摘Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unknown parameters can be identified.In order to identify physical parameters of vehicle in the case that all physical parameters are unknown,a methodology based on the State Variable Method(SVM) for physical parameter identification of two-axis on-road vehicle is presented.The modal parameters of the vehicle are identified by the SVM,furthermore,the physical parameters of the vehicle are estimated by least squares method.In numerical simulations,physical parameters of Ford Granada are chosen as parameters of vehicle model,and half-sine bump function is chosen to simulate tire stimulated by impulse excitation.The first numerical simulation shows that the present method can identify all of the physical parameters and the largest absolute value of percentage error of the identified physical parameter is 0.205%;and the effect of the errors of additional mass,structural parameter and measurement noise are discussed in the following simulations,the results shows that when signal contains 30 d B noise,the largest absolute value of percentage error of the identification is 3.78%.These simulations verify that the presented method is effective and accurate for physical parameter identification of two-axis on-road vehicles.The proposed methodology can identify all physical parameters of 7-DOF vehicle model by using free-decay responses of vehicle without need to assume some physical parameters are known.
基金Project supported by the National Defense Pre-research Foundation of‘Tenth Five-Year-Plan’of China (No.41320020301)
文摘The multidimensional modal theory proposed by Faltinsen, et al. (2000) is applied to solve liquid nonlinear free sloshing in right circular cylindrical tank for the first time. After selecting the leading modes and fixing the order of magnitudes based on the Narimanov-Moiseev third order asymptotic hypothesis, the general infinite dimensional modal system is reduced to a five dimensional asymptotic modal system (the system of second order nonlinear ordinary differential equations coupling the generalized time dependent coordinates of free surface wave elevation). The numerical integrations of this modal system discover most important nonlinear phenomena, which agree well with both pervious analytic theories and experimental observations. The results indicate that the multidimensional modal method is a very good tool for solving liquid nonlinear sloshing dynamics and will be developed to investigate more complex sloshing problem in our following work.
文摘In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The study of plate behavior is a very sensitive subject because it is part of the structural elements. The study of the dynamic behavior of free vibration structures is done by modal analysis in order to calculate natural frequencies and modal deformations. In this paper, we present the modal analysis of a thin rectangular plate simply supported. The analytical solution of the differential equation is obtained by applying the method of separating the variables. We are talking about the exact solution of the problem to the limit values. However, numerical methods such as the finite element method allow us to approximate these functions with greater accuracy. It is one of the most powerful computational methods for predicting dynamic response in a complex structure subject to arbitrary boundary conditions. The results obtained by MEF through Ansys 15.0 are then compared with those obtained by the analytical method.