Effects of free iron oxyhydrates (Fed) and soil organic matter (SOM) on copper (Cu^2+) sorption-desorption behavior by size fractions of aggregates from two typical paddy soils (Ferric-Accumulic Stagnic Anthro...Effects of free iron oxyhydrates (Fed) and soil organic matter (SOM) on copper (Cu^2+) sorption-desorption behavior by size fractions of aggregates from two typical paddy soils (Ferric-Accumulic Stagnic Anthrosol (Soil H) and Gleyic Stagnic Anthrosol (Soil W)) were investigated with and without treatments of dithionite-citrate-bicarbonate and of H2O2. The size fractions of aggregates were obtained from the undisturbed bulk topsoil using a low energy ultrasonic dispersion procedure. Experiments of equilibrium sorption and subsequent desorption were conducted at soil water ratio of 1:20, 25℃. For Soil H, Cu^2+ sorption capacity of the DCB-treated size fractions was decreased by 5.9% for fine sand fraction, by 40.4% for coarse sand fraction, in comparison to 2.9% for the bnlk sample. However, Cu^2+ sorption capacities of the H2O2-treated fractions were decreased by over 80% for the coarse sand fraction and by 15% for the clay-sized fraction in comparison to 88% for bulk soil. For Soil W, Cu^2+ sorption capacity of the DCB-treated size fraction was decreased by 30% for the coarse sand fraction and by over 75% for silt sand fraction in comparison to 44.5% for the bulk sample. Cu^2+ sorption capacities of the H2O2-treated fractions were decreased by only 2.0% for the coarse sand fraction and by 15% for the fine sand fraction in comparison to by 3.4% for bulk soil. However, Cu^2+ desorption rates were increased much in H2O2-treated samples by over 80% except the clay-sized fraction (only 9.5%) for Soil H. While removal of SOM with H2O2 tendend to increase the desorption rate, DCB- and H2O2-treatments caused decrease in Cu^2+ retention capacity of size fractions, Particularly, there hardly remained Cu^2+ retention capacity by size fractions from Soil H after H2O2 treatment except for clay-sized fraction. These findings supported again the dominance of the coarse sand fraction in sorption of metals and the preference of absorbed metals bound to SOM in differently stabilized status among the size fractions. Thus, enrichment and turnover of SOM in paddy soils may have great effects on metal retention and chemical mobility in paddy soils.展开更多
Phosphorus bioavailability has long been a recurring problem in tropical acid soils. A pot experiment was carried out during three (3) successive rice production cycles at Adiopodoumé to evaluate the response of ...Phosphorus bioavailability has long been a recurring problem in tropical acid soils. A pot experiment was carried out during three (3) successive rice production cycles at Adiopodoumé to evaluate the response of the NERICA 5 rice accession to various doses of calcium, magnesium and phosphorous. The experiment was conducted using a randomized split-plot design. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg·Ca·ha<sup>-1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg·Mg·ha<sup>-1</sup>) and Togo natural phosphate (0, 25, 50 and 75 kg·P·ha<sup>-1</sup>) were determined at each production cycle. The results showed that single-dose natural phosphate supplementation for three cropping cycles resulted in an average enrichment of around 2 mg·P·kg<sup>-1</sup> after each trial following its continuous dissolution, with an increase in DSP (33.31% to 70.52%). The study revealed one strategy for managing and enhancing native P with cations and another for exogenous P: there would be a synergy of Ca/Mg on native P, whereas an antagonism would characterize the two parameters in phosphate fertilization.展开更多
The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron ...The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron oxides ( Feo ) from the soils with sodium dithionite and acid ammonium oxalate solution respectively. ( 2 ) Add 2% glucose ( on the basis of air-dry soil weight ) to soils and incubate under submerged condition to activate iron oxides, and then the mixtures are dehydrated and air-dried to age iron oxides. ( 3 ) Precipitate various crystalline forms of iron oxides onto kaolinite. The results showed that free iron oxides ( Fed ) were the chief carrier of variable positive charges. Of which crystalline iron oxides ( Fed-Feo ) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges, and did little influence on negative charges. Whereas the amorphous iron oxides ( Feo ) , which presented mainly as a coating with a large specific surface area, not only had positive charges, but also blocked the negative charge sites in soils. Submerged incubation activated iron oxides in the soils, and increased the amount of amorphous iron oxides and the degree of activation of iron oxide, which resulted in the increase of positive and negative charges of soils. Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide, and also led to the decrease of positive and negative charges. Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges. Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges. Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.展开更多
[目的]烧结钕铁硼(NdFeB)磁体在声电磁性器件中的应用日益广泛,但其耐蚀性较差,一般需要进行有效的表面处理以提高其耐腐蚀性能和使用寿命。[方法]采用以羟基乙叉二膦酸(HEDP)为主配位剂的碱性无氰体系对烧结Nd Fe B磁体表面电镀铜。研...[目的]烧结钕铁硼(NdFeB)磁体在声电磁性器件中的应用日益广泛,但其耐蚀性较差,一般需要进行有效的表面处理以提高其耐腐蚀性能和使用寿命。[方法]采用以羟基乙叉二膦酸(HEDP)为主配位剂的碱性无氰体系对烧结Nd Fe B磁体表面电镀铜。研究了HEDP质量浓度对Cu镀层外观、表面粗糙度、厚度、结合力和耐蚀性的影响。[结果]HEDP的质量浓度为100~150 g/L时所得Cu镀层表面较光亮,厚度约为1.55μm,表面粗糙度较低,结合力和耐蚀性最佳。[结论]适宜的HEDP浓度有利于获得综合性能较好的Cu镀层。展开更多
[目的]烧结钕铁硼(Nd Fe B)的电镀前处理技术还不够成熟,开发适宜的前处理工艺极其重要。[方法]在电镀铜前,先采用以羟基乙叉二膦酸(HEDP)为主配位剂的溶液对NdFeB进行预浸。预浸液组成和工艺条件为:HEDP 20~30 g/L,氢氧化钾20~25 g/L,...[目的]烧结钕铁硼(Nd Fe B)的电镀前处理技术还不够成熟,开发适宜的前处理工艺极其重要。[方法]在电镀铜前,先采用以羟基乙叉二膦酸(HEDP)为主配位剂的溶液对NdFeB进行预浸。预浸液组成和工艺条件为:HEDP 20~30 g/L,氢氧化钾20~25 g/L,碳酸钾10~15 g/L,葡萄糖酸钾1~2 g/L,乙酸0.5~1.0 g/L,室温,时间60 s。通过电化学测试对比了Nd Fe B基体有无预浸处理时,铜在其表面的电沉积行为,并通过金相显微镜、扫描电镜、能谱仪和荧光光谱测厚仪,对比了有无预浸处理的Nd FeB基体表面Cu镀层的宏观和微观表面形貌、截面形貌、元素分布及厚度分布均匀性。[结果]Nd Fe B基体预浸后表面被活化,静态电位降低。预浸液能够填满基体表面的孔隙并形成一层水薄膜,在后续电镀铜时保护基体不被腐蚀。预浸处理的Nd Fe B基体表面所得Cu镀层均匀、致密,不易氧化发黑,结合力和耐蚀性较好。[结论]对烧结钕铁硼进行预浸处理,能够保证其在后续电镀铜过程不被腐蚀,提高Cu镀层的综合性能。展开更多
基金supported by the National Natural Science Foundation of China (No. 40231016).
文摘Effects of free iron oxyhydrates (Fed) and soil organic matter (SOM) on copper (Cu^2+) sorption-desorption behavior by size fractions of aggregates from two typical paddy soils (Ferric-Accumulic Stagnic Anthrosol (Soil H) and Gleyic Stagnic Anthrosol (Soil W)) were investigated with and without treatments of dithionite-citrate-bicarbonate and of H2O2. The size fractions of aggregates were obtained from the undisturbed bulk topsoil using a low energy ultrasonic dispersion procedure. Experiments of equilibrium sorption and subsequent desorption were conducted at soil water ratio of 1:20, 25℃. For Soil H, Cu^2+ sorption capacity of the DCB-treated size fractions was decreased by 5.9% for fine sand fraction, by 40.4% for coarse sand fraction, in comparison to 2.9% for the bnlk sample. However, Cu^2+ sorption capacities of the H2O2-treated fractions were decreased by over 80% for the coarse sand fraction and by 15% for the clay-sized fraction in comparison to 88% for bulk soil. For Soil W, Cu^2+ sorption capacity of the DCB-treated size fraction was decreased by 30% for the coarse sand fraction and by over 75% for silt sand fraction in comparison to 44.5% for the bulk sample. Cu^2+ sorption capacities of the H2O2-treated fractions were decreased by only 2.0% for the coarse sand fraction and by 15% for the fine sand fraction in comparison to by 3.4% for bulk soil. However, Cu^2+ desorption rates were increased much in H2O2-treated samples by over 80% except the clay-sized fraction (only 9.5%) for Soil H. While removal of SOM with H2O2 tendend to increase the desorption rate, DCB- and H2O2-treatments caused decrease in Cu^2+ retention capacity of size fractions, Particularly, there hardly remained Cu^2+ retention capacity by size fractions from Soil H after H2O2 treatment except for clay-sized fraction. These findings supported again the dominance of the coarse sand fraction in sorption of metals and the preference of absorbed metals bound to SOM in differently stabilized status among the size fractions. Thus, enrichment and turnover of SOM in paddy soils may have great effects on metal retention and chemical mobility in paddy soils.
文摘Phosphorus bioavailability has long been a recurring problem in tropical acid soils. A pot experiment was carried out during three (3) successive rice production cycles at Adiopodoumé to evaluate the response of the NERICA 5 rice accession to various doses of calcium, magnesium and phosphorous. The experiment was conducted using a randomized split-plot design. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg·Ca·ha<sup>-1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg·Mg·ha<sup>-1</sup>) and Togo natural phosphate (0, 25, 50 and 75 kg·P·ha<sup>-1</sup>) were determined at each production cycle. The results showed that single-dose natural phosphate supplementation for three cropping cycles resulted in an average enrichment of around 2 mg·P·kg<sup>-1</sup> after each trial following its continuous dissolution, with an increase in DSP (33.31% to 70.52%). The study revealed one strategy for managing and enhancing native P with cations and another for exogenous P: there would be a synergy of Ca/Mg on native P, whereas an antagonism would characterize the two parameters in phosphate fertilization.
文摘The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron oxides ( Feo ) from the soils with sodium dithionite and acid ammonium oxalate solution respectively. ( 2 ) Add 2% glucose ( on the basis of air-dry soil weight ) to soils and incubate under submerged condition to activate iron oxides, and then the mixtures are dehydrated and air-dried to age iron oxides. ( 3 ) Precipitate various crystalline forms of iron oxides onto kaolinite. The results showed that free iron oxides ( Fed ) were the chief carrier of variable positive charges. Of which crystalline iron oxides ( Fed-Feo ) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges, and did little influence on negative charges. Whereas the amorphous iron oxides ( Feo ) , which presented mainly as a coating with a large specific surface area, not only had positive charges, but also blocked the negative charge sites in soils. Submerged incubation activated iron oxides in the soils, and increased the amount of amorphous iron oxides and the degree of activation of iron oxide, which resulted in the increase of positive and negative charges of soils. Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide, and also led to the decrease of positive and negative charges. Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges. Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges. Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.
文摘[目的]烧结钕铁硼(NdFeB)磁体在声电磁性器件中的应用日益广泛,但其耐蚀性较差,一般需要进行有效的表面处理以提高其耐腐蚀性能和使用寿命。[方法]采用以羟基乙叉二膦酸(HEDP)为主配位剂的碱性无氰体系对烧结Nd Fe B磁体表面电镀铜。研究了HEDP质量浓度对Cu镀层外观、表面粗糙度、厚度、结合力和耐蚀性的影响。[结果]HEDP的质量浓度为100~150 g/L时所得Cu镀层表面较光亮,厚度约为1.55μm,表面粗糙度较低,结合力和耐蚀性最佳。[结论]适宜的HEDP浓度有利于获得综合性能较好的Cu镀层。
文摘[目的]烧结钕铁硼(Nd Fe B)的电镀前处理技术还不够成熟,开发适宜的前处理工艺极其重要。[方法]在电镀铜前,先采用以羟基乙叉二膦酸(HEDP)为主配位剂的溶液对NdFeB进行预浸。预浸液组成和工艺条件为:HEDP 20~30 g/L,氢氧化钾20~25 g/L,碳酸钾10~15 g/L,葡萄糖酸钾1~2 g/L,乙酸0.5~1.0 g/L,室温,时间60 s。通过电化学测试对比了Nd Fe B基体有无预浸处理时,铜在其表面的电沉积行为,并通过金相显微镜、扫描电镜、能谱仪和荧光光谱测厚仪,对比了有无预浸处理的Nd FeB基体表面Cu镀层的宏观和微观表面形貌、截面形貌、元素分布及厚度分布均匀性。[结果]Nd Fe B基体预浸后表面被活化,静态电位降低。预浸液能够填满基体表面的孔隙并形成一层水薄膜,在后续电镀铜时保护基体不被腐蚀。预浸处理的Nd Fe B基体表面所得Cu镀层均匀、致密,不易氧化发黑,结合力和耐蚀性较好。[结论]对烧结钕铁硼进行预浸处理,能够保证其在后续电镀铜过程不被腐蚀,提高Cu镀层的综合性能。