A new cement free iron trough castable was prepared with dense corundum and silicon carbide as the main raw materials and submicron SiO_(2) powder(d_(50)=0.242μm,SiO_(2)=99.9 mass%)as the binder.The effect of the sub...A new cement free iron trough castable was prepared with dense corundum and silicon carbide as the main raw materials and submicron SiO_(2) powder(d_(50)=0.242μm,SiO_(2)=99.9 mass%)as the binder.The effect of the submicron SiO_(2) powder addition(3%,4%,5%,6%,7%,8%,and 9%,by mass,respectively)on the properties of the prepared castables was studied.The working mechanism of submicron SiO_(2) powder was analyzed from the perspective of the particle size distribution and infrared absorption spectrum.The results show that:(1)cement free iron trough castables can be prepared using submicron SiO_(2) powder alone as the binder;(2)compared with traditional castables,the cement free castables have made a breakthrough in the water addition and hot modulus of rupture.The optimal submicron SiO_(2) powder addition is 4%-6%.展开更多
The influence of different nanoparticle sizes on the elastic modulus and the fatigue properties of epoxy/SiO_(2) nanocomposite is studied in this paper.Here,the cross-linked epoxy resins formed by the combination of D...The influence of different nanoparticle sizes on the elastic modulus and the fatigue properties of epoxy/SiO_(2) nanocomposite is studied in this paper.Here,the cross-linked epoxy resins formed by the combination of DGEBA and 1,3-phenylenediamine are used as the matrix phase,and spherical SiO_(2) particles are used as the reinforcement phase.In order to simulate the elastic modulus and long-term performance of the composite material at room temperature,the simulated temperature is set to 298 K and the mass fraction of SiO_(2) particles is set to 28.9%.The applied strain rate is 109/s during the simulation of the elastic modulus.The results show that the elastic modulus of the material increases with the increase in particle size.Furthermore,fatigue simulation under strain control is performed on the model with SiO_(2) nanoparticle radius of 12˚A.The results indicate that the influence trend of variable frequencies on the fatigue mechanical response is similar,and the mean stress decreases with the increase in number of cycles.In addition,the smaller the loading period and the more the number of cycles,the greater the mean stress reduction.Finally,the change in energy and free volume fraction are evaluated under fatigue loading condition.展开更多
The gas phase reaction mechanism of F2 + 2HBr = 2HF + Br2 has been investigated by (U)MP2 at 6-311G** level, and a series of four-center and three-center transition states have been obtained. The reaction mechan...The gas phase reaction mechanism of F2 + 2HBr = 2HF + Br2 has been investigated by (U)MP2 at 6-311G** level, and a series of four-center and three-center transition states have been obtained. The reaction mechanism was achieved by comparing the activation energy of seven reaction paths, i.e. the dissociation energy of F2 is less than the activation energy of the bimolecular elementary reaction F2 + HBr → HF + BrF. Thus it is theoretically proved that the title reaction occurs more easily in the free radical reaction with three medium steps.展开更多
基金support from the National Natural Science Foundation of China(NSFC,No.51804233)。
文摘A new cement free iron trough castable was prepared with dense corundum and silicon carbide as the main raw materials and submicron SiO_(2) powder(d_(50)=0.242μm,SiO_(2)=99.9 mass%)as the binder.The effect of the submicron SiO_(2) powder addition(3%,4%,5%,6%,7%,8%,and 9%,by mass,respectively)on the properties of the prepared castables was studied.The working mechanism of submicron SiO_(2) powder was analyzed from the perspective of the particle size distribution and infrared absorption spectrum.The results show that:(1)cement free iron trough castables can be prepared using submicron SiO_(2) powder alone as the binder;(2)compared with traditional castables,the cement free castables have made a breakthrough in the water addition and hot modulus of rupture.The optimal submicron SiO_(2) powder addition is 4%-6%.
文摘The influence of different nanoparticle sizes on the elastic modulus and the fatigue properties of epoxy/SiO_(2) nanocomposite is studied in this paper.Here,the cross-linked epoxy resins formed by the combination of DGEBA and 1,3-phenylenediamine are used as the matrix phase,and spherical SiO_(2) particles are used as the reinforcement phase.In order to simulate the elastic modulus and long-term performance of the composite material at room temperature,the simulated temperature is set to 298 K and the mass fraction of SiO_(2) particles is set to 28.9%.The applied strain rate is 109/s during the simulation of the elastic modulus.The results show that the elastic modulus of the material increases with the increase in particle size.Furthermore,fatigue simulation under strain control is performed on the model with SiO_(2) nanoparticle radius of 12˚A.The results indicate that the influence trend of variable frequencies on the fatigue mechanical response is similar,and the mean stress decreases with the increase in number of cycles.In addition,the smaller the loading period and the more the number of cycles,the greater the mean stress reduction.Finally,the change in energy and free volume fraction are evaluated under fatigue loading condition.
基金This work was supported by the China Postdoctoral Science Foundation (No. 2003033486) and the Natural Science Research Fund of University in JiangSu (No. 04KJB150149)
文摘The gas phase reaction mechanism of F2 + 2HBr = 2HF + Br2 has been investigated by (U)MP2 at 6-311G** level, and a series of four-center and three-center transition states have been obtained. The reaction mechanism was achieved by comparing the activation energy of seven reaction paths, i.e. the dissociation energy of F2 is less than the activation energy of the bimolecular elementary reaction F2 + HBr → HF + BrF. Thus it is theoretically proved that the title reaction occurs more easily in the free radical reaction with three medium steps.