Free vibration analysis of symmetrically laminated composite plates resting on Pasternak elastic support and coupled with an ideal, incompressible and inviscid fluid is the objective of the present work. The fluid dom...Free vibration analysis of symmetrically laminated composite plates resting on Pasternak elastic support and coupled with an ideal, incompressible and inviscid fluid is the objective of the present work. The fluid domain is considered to be infinite in the length direction but bounded in the depth and width directions. In order to derive the eigenvalue equation, Rayleigh-Ritz method is applied for the fluid-plate-foundation system. The efficiency of the method is proved by comparison studies with those reported in the open literature. At the end, parametric studies are carried out to examine the impact of different parameters on the natural frequencies.展开更多
In the present study,the static and dynamic analyses of elliptical functionally graded sandwich(FGS)plates are investigated.The constituent materials of the sandwich plates are ceramic and metal so that the core is ma...In the present study,the static and dynamic analyses of elliptical functionally graded sandwich(FGS)plates are investigated.The constituent materials of the sandwich plates are ceramic and metal so that the core is made of pure metal,while the face sheets consist of a combination of metal and ceramic according to a four-parameter power-law distribution.Different material profiles such as classic,symmetric,and asymmetric can be obtained using the applied generalized power-law distribution relation.The analysis is performed based on the classical laminated plate theory(CLPT)and the Ritz method.The effects of four parameters in the material distribution relation as well as different geometric parameters on the deflection and natural frequencies of elliptical FGS plates are studied.The results of this study show that with a proper distribution of materials,the optimal static and dynamic behavior can be achieved.The results also indicate that the generalized power-law distribution has significant effects on the natural frequencies of elliptical FGS plates.For example,although the frequency parameter of a plate with ceramic face sheets is more than the one with metal face sheets,the use of larger amounts of ceramic does not necessarily increase the natural frequency of the structure.展开更多
This paper presents a nonlinear model for piezoelastic laminated plates with damage effect of the intra-layers and inter-laminar interfaces. Discontinuity of displacement and electric potential on the interfaces are d...This paper presents a nonlinear model for piezoelastic laminated plates with damage effect of the intra-layers and inter-laminar interfaces. Discontinuity of displacement and electric potential on the interfaces are depicted by three shape functions. By using the Hamilton variation principle, the three-dimensional nonlinear dynamic equations of piezoelastic laminated plates with damage effect are derived. Then, by using the Galerkin method, a mathematical solution is presented. In the numerical studies, effects of various factors on the natural frequencies and nonlinear amplitude-frequency response of the simply-supported peizoelastic laminated plates with interfacial imperfections are discussed. These factors include different damage models, thickness of the piezoelectric layer, side-to-thickness ratio, and length-to-width ratio.展开更多
Based on Kirchhoff plate theory and the Rayleigh-Ritz method,the model for free vibration of rectangular plate with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved ...Based on Kirchhoff plate theory and the Rayleigh-Ritz method,the model for free vibration of rectangular plate with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved Fourier series in combination with the independent coordinate coupling method(ICCM).The effect of the cutout is taken into account by subtracting the energies of the cutouts from the total energies of the whole plate.The vibration displacement function of the hole domain is based on the coordinate system of the hole domain in this method.From the continuity condition of the vibration displacement function at the cutout,the transition matrix between the two coordinate systems is constructed,and the mass and stiffness matrices are completely obtained.As a result,the calculation is simplified and the computational efficiency of the solution is improved.In this paper,numerical examples and modal experiments are presented to validate the effectiveness of the modeling methods,and parameters related to influencing factors of the rectangular plate are analyzed to study the vibration characteristics.展开更多
This paper is concerned with the free vibration analysis of open circular cylindrical shells with either the two straight edges or the two curved edges simply supported and the remaining two edges supported by arbitra...This paper is concerned with the free vibration analysis of open circular cylindrical shells with either the two straight edges or the two curved edges simply supported and the remaining two edges supported by arbitrary classical boundary conditions. Based on the Donnell-Mushtari-Vlasov thin shell theory, an analytical solution of the traveling wave form along the simply supported edges and the modal wave form along the remaining two edges is obtained. With such a unidirectional traveling wave form solution, the method of the reverberation-ray matrix is introduced to derive the equation of natural frequencies of the shell with different classical boundary conditions. The exact solutions for natural frequencies of the open circular cylindrical shell are obtained with the employment of a golden section search algorithm. The calculation results are compared with those obtained by the finite element method and the methods in the available literature. The influence of length, thickness, radius, included angle, and the boundary conditions of the open circular cylindrical shell on the natural frequencies is investigated. The exact calculation results can be used as benchmark values for researchers to check their numerical methods and for engineers to design structures with thin shell components.展开更多
The paper presents two methods for the formulation of free vibration analysis of collecting electrodes of precipitators.The first,called the hybrid finite element method, combines the finit element method used for cal...The paper presents two methods for the formulation of free vibration analysis of collecting electrodes of precipitators.The first,called the hybrid finite element method, combines the finit element method used for calculations of spring deformations with the rigid finite element method used to reflect mass and geometrical features,which is called the hybrid finite element method.As a result,a model with a diagonal mass matrix is obtained.Due to a specific geometry of the electrodes,which are long plates of complicated shapes,the second method proposed is the strip method which is a semi-analytical method.The strip method allows us to formulate the equations of motion with a considerably smaller number of generalized coordinates.Results of numerical calculations obtained by both methods are compared with those obtained using commercial software like ANSYS and ABAQUS.Good compatibility of results is achieved.展开更多
A wind turbine is subjected to a regime of varying loads.For example,each rotor revolution causes a complete gravity stress reversal in the low-speed shaft,and there are varying stresses from the out-of-plane loading ...A wind turbine is subjected to a regime of varying loads.For example,each rotor revolution causes a complete gravity stress reversal in the low-speed shaft,and there are varying stresses from the out-of-plane loading cycle due to fluctuating wind load.Consequently,wind turbine blade design is governed by fatigue rather than ultimate load considerations.Previous studies have adopted many different beam theories,using different techniques and codes,to model the National Renewable Energy Laboratory(NREL)5MWoffshore wind turbine blade.There are differences,from study to study,in the free vibration results and the dynamic response.The contribution of this study is to apply the code written by the authors to the different beam theories used with the aim of comparing the different beam theories presented in the literature and that developed by the authors.This paper reports the investigation of the effects of deformation parameters on the dynamic characteristics of the NREL 5 MW offshore wind turbine blades predicted by the different beam theories.The investigation of free vibrations is a fundamental step in the analysis of structural dynamics,and this study compares different computational structural methods and investigates their effect on the predicted dynamic response.The modal characteristics of every model examined have been combined with strip theory to determine the dynamic response of the blade.展开更多
This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates wi...This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。展开更多
From the mixed variational principle, by the selection of the state variables and its dual variables, the Hamiltonian canonical equation for the dynamic analysis of shear deformable antisymmetric angle-ply laminated p...From the mixed variational principle, by the selection of the state variables and its dual variables, the Hamiltonian canonical equation for the dynamic analysis of shear deformable antisymmetric angle-ply laminated plates is derived, leading to the mathematical frame of symplectic geometry and algorithms, and the exact solution for the arbitrary boundary conditions is also derived by the adjoint orthonormalized symplectic expansion method. Numerical results are presented with the emphasis on the effects of length/thickness ratio, arbitrary boundary conditions, degrees of anisotropy, number of layers, ply-angles and the corrected coefficients of transverse shear.展开更多
A rectangular, singly curved and finite strip element for curved sandwich dynamic analysis is developed. The convergence and speed of the method, the strip element density and the reduction of the degrees of freedom e...A rectangular, singly curved and finite strip element for curved sandwich dynamic analysis is developed. The convergence and speed of the method, the strip element density and the reduction of the degrees of freedom etc . are discussed through free vibration analysis of a honeycomb cylindrical shell pan-el. The results show that the frequencies and modal shapes obtained agree very well with the analytical solutions for the symmetrical honeycomb sandwich under the simply supported end conditions.展开更多
文摘Free vibration analysis of symmetrically laminated composite plates resting on Pasternak elastic support and coupled with an ideal, incompressible and inviscid fluid is the objective of the present work. The fluid domain is considered to be infinite in the length direction but bounded in the depth and width directions. In order to derive the eigenvalue equation, Rayleigh-Ritz method is applied for the fluid-plate-foundation system. The efficiency of the method is proved by comparison studies with those reported in the open literature. At the end, parametric studies are carried out to examine the impact of different parameters on the natural frequencies.
文摘In the present study,the static and dynamic analyses of elliptical functionally graded sandwich(FGS)plates are investigated.The constituent materials of the sandwich plates are ceramic and metal so that the core is made of pure metal,while the face sheets consist of a combination of metal and ceramic according to a four-parameter power-law distribution.Different material profiles such as classic,symmetric,and asymmetric can be obtained using the applied generalized power-law distribution relation.The analysis is performed based on the classical laminated plate theory(CLPT)and the Ritz method.The effects of four parameters in the material distribution relation as well as different geometric parameters on the deflection and natural frequencies of elliptical FGS plates are studied.The results of this study show that with a proper distribution of materials,the optimal static and dynamic behavior can be achieved.The results also indicate that the generalized power-law distribution has significant effects on the natural frequencies of elliptical FGS plates.For example,although the frequency parameter of a plate with ceramic face sheets is more than the one with metal face sheets,the use of larger amounts of ceramic does not necessarily increase the natural frequency of the structure.
基金supported by the National Natural Science Foundation of China (No. 10572049)
文摘This paper presents a nonlinear model for piezoelastic laminated plates with damage effect of the intra-layers and inter-laminar interfaces. Discontinuity of displacement and electric potential on the interfaces are depicted by three shape functions. By using the Hamilton variation principle, the three-dimensional nonlinear dynamic equations of piezoelastic laminated plates with damage effect are derived. Then, by using the Galerkin method, a mathematical solution is presented. In the numerical studies, effects of various factors on the natural frequencies and nonlinear amplitude-frequency response of the simply-supported peizoelastic laminated plates with interfacial imperfections are discussed. These factors include different damage models, thickness of the piezoelectric layer, side-to-thickness ratio, and length-to-width ratio.
基金support of this work by the National Natural Science Foundation of China(No.51405096)the Fundamental Research Funds for the Central Universities(HEUCF210710).
文摘Based on Kirchhoff plate theory and the Rayleigh-Ritz method,the model for free vibration of rectangular plate with rectangular cutouts under arbitrary elastic boundary conditions is established by using the improved Fourier series in combination with the independent coordinate coupling method(ICCM).The effect of the cutout is taken into account by subtracting the energies of the cutouts from the total energies of the whole plate.The vibration displacement function of the hole domain is based on the coordinate system of the hole domain in this method.From the continuity condition of the vibration displacement function at the cutout,the transition matrix between the two coordinate systems is constructed,and the mass and stiffness matrices are completely obtained.As a result,the calculation is simplified and the computational efficiency of the solution is improved.In this paper,numerical examples and modal experiments are presented to validate the effectiveness of the modeling methods,and parameters related to influencing factors of the rectangular plate are analyzed to study the vibration characteristics.
基金Project supported by the National Natural Science Foundation of China (Nos. 51209052, 51279038, and 51479041), the Natural Sci- ence Foundation of Heilongjiang Province (No. QC2011C013), and the Opening Funds of State Key Laboratory of Ocean Engineering of Shanghai Jiao Tong University (No. 1307), China
文摘This paper is concerned with the free vibration analysis of open circular cylindrical shells with either the two straight edges or the two curved edges simply supported and the remaining two edges supported by arbitrary classical boundary conditions. Based on the Donnell-Mushtari-Vlasov thin shell theory, an analytical solution of the traveling wave form along the simply supported edges and the modal wave form along the remaining two edges is obtained. With such a unidirectional traveling wave form solution, the method of the reverberation-ray matrix is introduced to derive the equation of natural frequencies of the shell with different classical boundary conditions. The exact solutions for natural frequencies of the open circular cylindrical shell are obtained with the employment of a golden section search algorithm. The calculation results are compared with those obtained by the finite element method and the methods in the available literature. The influence of length, thickness, radius, included angle, and the boundary conditions of the open circular cylindrical shell on the natural frequencies is investigated. The exact calculation results can be used as benchmark values for researchers to check their numerical methods and for engineers to design structures with thin shell components.
基金Research is financed from the project NR03-0036-04/2008
文摘The paper presents two methods for the formulation of free vibration analysis of collecting electrodes of precipitators.The first,called the hybrid finite element method, combines the finit element method used for calculations of spring deformations with the rigid finite element method used to reflect mass and geometrical features,which is called the hybrid finite element method.As a result,a model with a diagonal mass matrix is obtained.Due to a specific geometry of the electrodes,which are long plates of complicated shapes,the second method proposed is the strip method which is a semi-analytical method.The strip method allows us to formulate the equations of motion with a considerably smaller number of generalized coordinates.Results of numerical calculations obtained by both methods are compared with those obtained using commercial software like ANSYS and ABAQUS.Good compatibility of results is achieved.
文摘A wind turbine is subjected to a regime of varying loads.For example,each rotor revolution causes a complete gravity stress reversal in the low-speed shaft,and there are varying stresses from the out-of-plane loading cycle due to fluctuating wind load.Consequently,wind turbine blade design is governed by fatigue rather than ultimate load considerations.Previous studies have adopted many different beam theories,using different techniques and codes,to model the National Renewable Energy Laboratory(NREL)5MWoffshore wind turbine blade.There are differences,from study to study,in the free vibration results and the dynamic response.The contribution of this study is to apply the code written by the authors to the different beam theories used with the aim of comparing the different beam theories presented in the literature and that developed by the authors.This paper reports the investigation of the effects of deformation parameters on the dynamic characteristics of the NREL 5 MW offshore wind turbine blades predicted by the different beam theories.The investigation of free vibrations is a fundamental step in the analysis of structural dynamics,and this study compares different computational structural methods and investigates their effect on the predicted dynamic response.The modal characteristics of every model examined have been combined with strip theory to determine the dynamic response of the blade.
文摘This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。
文摘From the mixed variational principle, by the selection of the state variables and its dual variables, the Hamiltonian canonical equation for the dynamic analysis of shear deformable antisymmetric angle-ply laminated plates is derived, leading to the mathematical frame of symplectic geometry and algorithms, and the exact solution for the arbitrary boundary conditions is also derived by the adjoint orthonormalized symplectic expansion method. Numerical results are presented with the emphasis on the effects of length/thickness ratio, arbitrary boundary conditions, degrees of anisotropy, number of layers, ply-angles and the corrected coefficients of transverse shear.
文摘A rectangular, singly curved and finite strip element for curved sandwich dynamic analysis is developed. The convergence and speed of the method, the strip element density and the reduction of the degrees of freedom etc . are discussed through free vibration analysis of a honeycomb cylindrical shell pan-el. The results show that the frequencies and modal shapes obtained agree very well with the analytical solutions for the symmetrical honeycomb sandwich under the simply supported end conditions.