Experimental data taken from free-field soil in 1-g shaking table tests are valuable for seismic studies on soil-structure interaction.But the available data from medium-to large-scale shaking table tests were not abu...Experimental data taken from free-field soil in 1-g shaking table tests are valuable for seismic studies on soil-structure interaction.But the available data from medium-to large-scale shaking table tests were not abundant enough to cover a large variety of types and conditions of the soil.In the study,1-g shaking table tests of a 3-m-height sand column were conducted to provide seismic experimental data about sand.The sand was directly collected in-situ,with the largest grain diameter being 2 cm and containing a water content of 6.3%.Properties of the sand were estimated under the influence of white noise plus pulse and earthquake motions,including the settlement,the dynamic properties of the sand column,and the three soil layers′shear modulus degradation relationships.The estimated properties were then indirectly verified by means of finite element analysis.Results show that the estimated parameters were effective and could be used in numerical modeling to reproduce approximate seismic responses of the sand column.展开更多
This article deals with subjective measurements of attenuation characteristic of three earmuffs (A, B, C) and two earplugs (foam and molded). The measurement was carried out through the real-ear attenuation at thresho...This article deals with subjective measurements of attenuation characteristic of three earmuffs (A, B, C) and two earplugs (foam and molded). The measurement was carried out through the real-ear attenuation at threshold (REAT) under freefield condition. The five devices were examined singly, and four of them in combination. The performance of double hearing protection (earplug plus earmuff)were investigated experimentally using the same method for a number of combinations. All tests were conducted on 7 subjects, and two replications per subject. The obtained data of the earmuffs tested show that earmuff (A) posscsses the lowest attenuation and is characterized by highest standard deviation. On the other hand, the foam plug provides the higher attenuation and the lower standard deviation. When the foam plug was combined with either carmuff (B or C) an improvement of attenuation was similar, i. e. the choice of earmuff is not important. This combination yields higher attenuation than that produces for either device alone, but does not simply yield overall attenuation equal to the sum of the individual of each device. However, when situation was reversed, the combination of either earplug (foam or molded) with single earmuff yields variation in attenuation below 2 kHz. At and above 2 kHz, the combination results were comparcd to the bone conduction limits which was reported by different authors. At these frequencies, all tests of plug plus earmuff combinations that were studied provided attenuation approximately equal to the bone conduction limits of human skull. Finally, the attenuation estimates derived in this study werc less than comparable data published by the respective manufacturers.展开更多
In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting conse...In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.展开更多
为能够在合理计算规模下准确模拟空爆自由场冲击波特征的网格划分方案,获得可靠的计算结果,本文运用验证与确认(verification and validation,V&V)方法,通过开展网格敏感性分析,确认了炸药空爆计算模型的数值解、外推估值、网格收...为能够在合理计算规模下准确模拟空爆自由场冲击波特征的网格划分方案,获得可靠的计算结果,本文运用验证与确认(verification and validation,V&V)方法,通过开展网格敏感性分析,确认了炸药空爆计算模型的数值解、外推估值、网格收敛指标与比例距离的定量关系,给出了满足不同网格收敛指标要求的最大比例网格尺寸随比例距离位置的变化关系。据此,在比例距离Z为0~40 m·kg^(-1/3)范围内,给出了划分渐变网格的优化方案。针对1维、2维、3维计算模型,分别比较了细网格、粗网格、渐变网格方案的计算精度与计算耗时情况,讨论了本文提出网格划分方法的适用性。同时,采用本文建议的网格优化方案,给出了动爆冲击波毁伤飞机数值模拟场景的应用算例。结果表明,本文建议的网格优化方案可在几乎不降低计算精度的前提下显著提升计算效率,可为空爆自由场或者近似计算场景的数值模型网格划分提供参考。展开更多
听觉系统各组成部分的机械损伤是爆炸后造成听力损失的主要原因,强脉冲声致听觉损害风险准则仍然存在许多争议,例如:指标选择冲量还是超压峰值,正压持续时间是否重要等。本研究基于自由场实爆条件,设计并搭建了大动物爆炸致伤平台,探究...听觉系统各组成部分的机械损伤是爆炸后造成听力损失的主要原因,强脉冲声致听觉损害风险准则仍然存在许多争议,例如:指标选择冲量还是超压峰值,正压持续时间是否重要等。本研究基于自由场实爆条件,设计并搭建了大动物爆炸致伤平台,探究了不同爆炸参数对鼓膜破裂的影响规律,并建立了基于自由场超压峰值和正压持续时间的鼓膜创伤量效关系。通过笔形压力传感器测量自由场超压,通过Friedlander公式拟合超压时程曲线,确定冲击波超压峰值和正压持续时间,并对时域中记录的波形进行归一化能量频谱分析,以确定冲击波在频域上的信号能量分布。对爆炸后的小型猪进行解剖,记录不同爆炸参数下鼓膜创伤程度。以超压峰值和正压持续时间为自变量,对实验数据进行二元逻辑回归分析,并给出鼓膜破裂风险曲线。研究发现,当自由场超压峰值低于170 kPa时,鼓膜无明显损伤;当自由场超压峰值高于237 kPa时,部分鼓膜出现不同程度的破裂和充血。距爆心越近,超压峰值越大,但鼓膜创伤的严重程度并未随之单调增加。在8.0 kg TNT当量的爆炸实验中,鼓膜破裂的严重程度随爆心距的减小呈现先提高再降低的趋势。通过对冲击波载荷特征的分析可知,距爆心越近,正压持续时间越短,高频段能量占比相对更大,小型猪鼓膜破裂的概率可能反而降低,此时仍然出现显著的听力损失和耳蜗损伤。鼓膜作为通过振动传递声信号的黏弹性薄膜结构,其动力学响应可能与载荷频率成分密切相关。除了超压峰值,冲击波波形频谱分布对鼓膜破裂程度影响显著。展开更多
基金Supported by:National Natural Science Foundation of China under Grant Nos.52008233 and U1839201the National Key Research and Development Program of China under Grant No.2018YFC1504305the Innovative Research Groups of the National Natural Science Foundation of China under Grant No.51421005。
文摘Experimental data taken from free-field soil in 1-g shaking table tests are valuable for seismic studies on soil-structure interaction.But the available data from medium-to large-scale shaking table tests were not abundant enough to cover a large variety of types and conditions of the soil.In the study,1-g shaking table tests of a 3-m-height sand column were conducted to provide seismic experimental data about sand.The sand was directly collected in-situ,with the largest grain diameter being 2 cm and containing a water content of 6.3%.Properties of the sand were estimated under the influence of white noise plus pulse and earthquake motions,including the settlement,the dynamic properties of the sand column,and the three soil layers′shear modulus degradation relationships.The estimated properties were then indirectly verified by means of finite element analysis.Results show that the estimated parameters were effective and could be used in numerical modeling to reproduce approximate seismic responses of the sand column.
文摘This article deals with subjective measurements of attenuation characteristic of three earmuffs (A, B, C) and two earplugs (foam and molded). The measurement was carried out through the real-ear attenuation at threshold (REAT) under freefield condition. The five devices were examined singly, and four of them in combination. The performance of double hearing protection (earplug plus earmuff)were investigated experimentally using the same method for a number of combinations. All tests were conducted on 7 subjects, and two replications per subject. The obtained data of the earmuffs tested show that earmuff (A) posscsses the lowest attenuation and is characterized by highest standard deviation. On the other hand, the foam plug provides the higher attenuation and the lower standard deviation. When the foam plug was combined with either carmuff (B or C) an improvement of attenuation was similar, i. e. the choice of earmuff is not important. This combination yields higher attenuation than that produces for either device alone, but does not simply yield overall attenuation equal to the sum of the individual of each device. However, when situation was reversed, the combination of either earplug (foam or molded) with single earmuff yields variation in attenuation below 2 kHz. At and above 2 kHz, the combination results were comparcd to the bone conduction limits which was reported by different authors. At these frequencies, all tests of plug plus earmuff combinations that were studied provided attenuation approximately equal to the bone conduction limits of human skull. Finally, the attenuation estimates derived in this study werc less than comparable data published by the respective manufacturers.
基金supported by the National Natural Science Foundation of China(Grant Nos.12221002,12102233)。
文摘In recent years,explosion shock wave has been considered as a signature injury of the current military conflicts.Although strong shock wave is lethal to the human body,weak shock wave can cause many more lasting consequences.To investigate the protection ability and characteristics of flexible materials and structures under weak shock wave loading,the blast wave produced by TNT explosive is loaded on the polyurethane foam with the density of 200.0 kg/m3(F-200)and 400.0 kg/m3(F-400),polyurea with the density of 1100.0 kg/m^(3)(P-1100)and structures composed of the two materials,which are intended for individual protection.Experimental results indicate that the shock wave is attenuated to weak pressure disturbance after interacting with the flexible materials which are not damaged.The shock wave protective capability of single-layer materials is dependent on their thickness,density and microscopic characteristics.The overpressure,maximum pressure rise rate and impulse of transmitted wave decrease exponentially with increase in sample thickness.For the same thickness,F-400 provides better protective capability than F-200 while P-1100 shows the best protective capability among the three materials.In this study,as the materials are not destroyed,F-200 with a thickness more than10.0 mm,F-400 with a thickness more than 4.0 mm,and P-1100 with a thickness more than 1.0 mm can attenuate the overpressure amplitude more than 90.0%.Further,multi-layer flexible composites are designed.Different layer layouts of designed structures and layer thickness of the single-layer materials can affect the protective performance.Within the research range,the structure in which polyurea is placed on the impact side shows the optimal shock wave protective performance,and the thicknesses of polyurea and polyurethane foam are 1.0 mm and 4.0 mm respectively.The overpressure attenuation rate reached maximum value of 93.3%and impulse attenuation capacity of this structure are better than those of single-layer polyurea and polyurethane foam with higher areal density.
文摘为能够在合理计算规模下准确模拟空爆自由场冲击波特征的网格划分方案,获得可靠的计算结果,本文运用验证与确认(verification and validation,V&V)方法,通过开展网格敏感性分析,确认了炸药空爆计算模型的数值解、外推估值、网格收敛指标与比例距离的定量关系,给出了满足不同网格收敛指标要求的最大比例网格尺寸随比例距离位置的变化关系。据此,在比例距离Z为0~40 m·kg^(-1/3)范围内,给出了划分渐变网格的优化方案。针对1维、2维、3维计算模型,分别比较了细网格、粗网格、渐变网格方案的计算精度与计算耗时情况,讨论了本文提出网格划分方法的适用性。同时,采用本文建议的网格优化方案,给出了动爆冲击波毁伤飞机数值模拟场景的应用算例。结果表明,本文建议的网格优化方案可在几乎不降低计算精度的前提下显著提升计算效率,可为空爆自由场或者近似计算场景的数值模型网格划分提供参考。
文摘听觉系统各组成部分的机械损伤是爆炸后造成听力损失的主要原因,强脉冲声致听觉损害风险准则仍然存在许多争议,例如:指标选择冲量还是超压峰值,正压持续时间是否重要等。本研究基于自由场实爆条件,设计并搭建了大动物爆炸致伤平台,探究了不同爆炸参数对鼓膜破裂的影响规律,并建立了基于自由场超压峰值和正压持续时间的鼓膜创伤量效关系。通过笔形压力传感器测量自由场超压,通过Friedlander公式拟合超压时程曲线,确定冲击波超压峰值和正压持续时间,并对时域中记录的波形进行归一化能量频谱分析,以确定冲击波在频域上的信号能量分布。对爆炸后的小型猪进行解剖,记录不同爆炸参数下鼓膜创伤程度。以超压峰值和正压持续时间为自变量,对实验数据进行二元逻辑回归分析,并给出鼓膜破裂风险曲线。研究发现,当自由场超压峰值低于170 kPa时,鼓膜无明显损伤;当自由场超压峰值高于237 kPa时,部分鼓膜出现不同程度的破裂和充血。距爆心越近,超压峰值越大,但鼓膜创伤的严重程度并未随之单调增加。在8.0 kg TNT当量的爆炸实验中,鼓膜破裂的严重程度随爆心距的减小呈现先提高再降低的趋势。通过对冲击波载荷特征的分析可知,距爆心越近,正压持续时间越短,高频段能量占比相对更大,小型猪鼓膜破裂的概率可能反而降低,此时仍然出现显著的听力损失和耳蜗损伤。鼓膜作为通过振动传递声信号的黏弹性薄膜结构,其动力学响应可能与载荷频率成分密切相关。除了超压峰值,冲击波波形频谱分布对鼓膜破裂程度影响显著。