Al_(1-x)In_(x)N, a Ⅲ-nitride semiconductor material, is currently of great research interest due to its remarkable physical properties and chemical stability. When the Al and In compositions are tuned, its band-gap e...Al_(1-x)In_(x)N, a Ⅲ-nitride semiconductor material, is currently of great research interest due to its remarkable physical properties and chemical stability. When the Al and In compositions are tuned, its band-gap energy varies from 0.7 eV to 6.2 eV, which shows great potential for application in photodetectors. Here, we report the fabrication and performance evaluation of integrated Al_(1-x)In_(x)N on a free-standing GaN substrate through direct radio-frequency magnetron sputtering.The optical properties of Al_(1-x)In_(x)N will be enhanced by the polarization effect of a heterostructure composed of Al_(1-x)In_(x)N and other Ⅲ-nitride materials. An Al_(1-x)In_(x)N/Ga N visible-light photodetector was prepared by semiconductor fabrication technologies such as lithography and metal deposition. The highest photoresponsivity achieved was 1.52 A·W^(-1)under 365 nm wavelength illumination and the photodetector was determined to have the composition Al0.75In0.25N/GaN.A rise time of 0.55 s was observed after transient analysis of the device. The prepared Al_(1-x)In_(x)N visible-light photodetector had a low dark current, high photoresponsivity and fast response speed. By promoting a low-cost, simple fabrication method,this study expands the application of ternary alloy Al_(1-x)In_(x)N visible-light photodetectors in optical communication.展开更多
In this work, a dislocation-related tunneling leakage current model is developed to explain the temperature-dependent reverse current–voltage(I–V –T) characteristics of a Schottky barrier diode fabricated on free...In this work, a dislocation-related tunneling leakage current model is developed to explain the temperature-dependent reverse current–voltage(I–V –T) characteristics of a Schottky barrier diode fabricated on free-standing GaN substrate for reverse-bias voltages up to-150 V. The model suggests that the reverse leakage current is dominated by the direct tunneling of electrons from Schottky contact metal into a continuum of states associated with conductive dislocations in GaN epilayer.A reverse leakage current ideality factor, which originates from the scattering effect at metal/GaN interface, is introduced into the model. Good agreement between the experimental data and the simulated I–V curves is obtained.展开更多
A violet laser diode (LD) structure is grown on a free-standing c-plane GaN substrate and 4 μm×800μm ridge waveguide LDs are fabricated. The electrical and the optical characteristics of LDs under different f...A violet laser diode (LD) structure is grown on a free-standing c-plane GaN substrate and 4 μm×800μm ridge waveguide LDs are fabricated. The electrical and the optical characteristics of LDs under different facet-coating and chip-mounting conditions are investigated under pulse mode operation. The active region temperatures of p-side up and p-side down mounted LDs are calculated with different injection currents. The calculated thermal resistances of p-side up and p-side down mounted LDs are 4.6 K/W and 3 K/W, respectively. The threshold current of the p-side down mounted LD is much lower than that of the p-side up mounted LD. The blue shift of the emission wavelength with increasing injection current is observed only for the LD with p-side down mounting configuration, due to the more efficient heat dissipation.展开更多
Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal ...Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges.展开更多
Here,a novel fabrication method for making free-standing 3D hierarchical porous carbon aerogels from molecularly engineered biomass-derived hydrogels is presented.In situ formed flower-like CaCO_(3)molecularly embedde...Here,a novel fabrication method for making free-standing 3D hierarchical porous carbon aerogels from molecularly engineered biomass-derived hydrogels is presented.In situ formed flower-like CaCO_(3)molecularly embedded within the hydrogel network regulated the pore structure during in situ mineralization assisted one-step activation graphitization(iMAG),while the intrinsic structural integrity of the carbon aerogels was maintained.The homogenously distributed minerals simultaneously acted as a hard template,activating agent,and graphitization catalyst.The decomposition of the homogenously distributed CaCO_(3)during iMAG followed by the etching of residual CaO through a mild acid washing endowed a robust carbon aerogel with high porosity and excellent electrochemical performance.At 0.5 mA cm^(-2),the gravimetric capacitance increased from 0.01 F g^(-1)without mineralization to 322 F g^(-1)with iMAG,which exceeds values reported for any other free-standing or powder-based biomass-derived carbon electrodes.An outstanding cycling stability of~104%after 1000 cycles in 1 M HClO4 was demonstrated.The assembled symmetric supercapacitor device delivered a high specific capacitance of 376 F g^(-1)and a high energy density of 26 W h kg^(-1)at a power density of 4000 W kg^(-1),with excellent cycling performance(98.5%retention after 2000 cycles).In combination with the proposed 3D printed mold-assisted solution casting(3DMASC),iMAG allows for the generation of free-standing carbon aerogel architectures with arbitrary shapes.Furthermore,the novel method introduces flexibility in constructing free-standing carbon aerogels from any ionically cross-linkable biopolymer while maintaining the ability to tailor the design,dimensions,and pore size distribution for specific energy storage applications.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61974144, 62004127, and 12074263)Key-Area Research and Development Program of Guangdong Province (Grant Nos. 2020B010174003 and 2020B010169001)+2 种基金Guangdong Science Foundation for Distinguished Young Scholars (Grant No. 2022B1515020073)the Science and Technology Foundation of Shenzhen (Grant No. JSGG20191129114216474)the Open Project of State Key Laboratory of Functional Materials for Informatics。
文摘Al_(1-x)In_(x)N, a Ⅲ-nitride semiconductor material, is currently of great research interest due to its remarkable physical properties and chemical stability. When the Al and In compositions are tuned, its band-gap energy varies from 0.7 eV to 6.2 eV, which shows great potential for application in photodetectors. Here, we report the fabrication and performance evaluation of integrated Al_(1-x)In_(x)N on a free-standing GaN substrate through direct radio-frequency magnetron sputtering.The optical properties of Al_(1-x)In_(x)N will be enhanced by the polarization effect of a heterostructure composed of Al_(1-x)In_(x)N and other Ⅲ-nitride materials. An Al_(1-x)In_(x)N/Ga N visible-light photodetector was prepared by semiconductor fabrication technologies such as lithography and metal deposition. The highest photoresponsivity achieved was 1.52 A·W^(-1)under 365 nm wavelength illumination and the photodetector was determined to have the composition Al0.75In0.25N/GaN.A rise time of 0.55 s was observed after transient analysis of the device. The prepared Al_(1-x)In_(x)N visible-light photodetector had a low dark current, high photoresponsivity and fast response speed. By promoting a low-cost, simple fabrication method,this study expands the application of ternary alloy Al_(1-x)In_(x)N visible-light photodetectors in optical communication.
文摘In this work, a dislocation-related tunneling leakage current model is developed to explain the temperature-dependent reverse current–voltage(I–V –T) characteristics of a Schottky barrier diode fabricated on free-standing GaN substrate for reverse-bias voltages up to-150 V. The model suggests that the reverse leakage current is dominated by the direct tunneling of electrons from Schottky contact metal into a continuum of states associated with conductive dislocations in GaN epilayer.A reverse leakage current ideality factor, which originates from the scattering effect at metal/GaN interface, is introduced into the model. Good agreement between the experimental data and the simulated I–V curves is obtained.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60506001,60776047,60476021,60576003 and 60836003)the National Basic Research Programme of China (Grant No 2007CB936700)
文摘A violet laser diode (LD) structure is grown on a free-standing c-plane GaN substrate and 4 μm×800μm ridge waveguide LDs are fabricated. The electrical and the optical characteristics of LDs under different facet-coating and chip-mounting conditions are investigated under pulse mode operation. The active region temperatures of p-side up and p-side down mounted LDs are calculated with different injection currents. The calculated thermal resistances of p-side up and p-side down mounted LDs are 4.6 K/W and 3 K/W, respectively. The threshold current of the p-side down mounted LD is much lower than that of the p-side up mounted LD. The blue shift of the emission wavelength with increasing injection current is observed only for the LD with p-side down mounting configuration, due to the more efficient heat dissipation.
基金sponsored by the National Natural Science Foundation of China(21905221,21805221)the Suzhou Technological innovation of key industries-research and development of key technologies(SGC2021118)。
文摘Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges.
基金financially supported by the European Research Council under the Horizon 2020 framework programme(Grant No.772370-PHOENEEX)
文摘Here,a novel fabrication method for making free-standing 3D hierarchical porous carbon aerogels from molecularly engineered biomass-derived hydrogels is presented.In situ formed flower-like CaCO_(3)molecularly embedded within the hydrogel network regulated the pore structure during in situ mineralization assisted one-step activation graphitization(iMAG),while the intrinsic structural integrity of the carbon aerogels was maintained.The homogenously distributed minerals simultaneously acted as a hard template,activating agent,and graphitization catalyst.The decomposition of the homogenously distributed CaCO_(3)during iMAG followed by the etching of residual CaO through a mild acid washing endowed a robust carbon aerogel with high porosity and excellent electrochemical performance.At 0.5 mA cm^(-2),the gravimetric capacitance increased from 0.01 F g^(-1)without mineralization to 322 F g^(-1)with iMAG,which exceeds values reported for any other free-standing or powder-based biomass-derived carbon electrodes.An outstanding cycling stability of~104%after 1000 cycles in 1 M HClO4 was demonstrated.The assembled symmetric supercapacitor device delivered a high specific capacitance of 376 F g^(-1)and a high energy density of 26 W h kg^(-1)at a power density of 4000 W kg^(-1),with excellent cycling performance(98.5%retention after 2000 cycles).In combination with the proposed 3D printed mold-assisted solution casting(3DMASC),iMAG allows for the generation of free-standing carbon aerogel architectures with arbitrary shapes.Furthermore,the novel method introduces flexibility in constructing free-standing carbon aerogels from any ionically cross-linkable biopolymer while maintaining the ability to tailor the design,dimensions,and pore size distribution for specific energy storage applications.