Network slicing is one of the most important concepts in 5G networks. It is enabled by the Network Function Virtualization (NFV) technology to allow a set of Virtual Network Functions (VNFs) to be interconnected to fo...Network slicing is one of the most important concepts in 5G networks. It is enabled by the Network Function Virtualization (NFV) technology to allow a set of Virtual Network Functions (VNFs) to be interconnected to form a Network Service (NS). When network slices are created in 5G, some are shared among different 5G services while the others are dedicated to specific 5G services. The latter are called dedicated slices. Dedicated slices can be constructed with different configurations. In this research, dedicated slices of different configurations in 5G Core were evaluated in order to discover which one would perform better than the others. The performance of three systems would be compared: 1) Free5GC Stage 2 with each dedicated slice consisting of only UPF;2) Free5GC Stage 3 with each dedicated slice consisting of only UPF;3) Free5GC Stage 3 with each dedicated slice consisting of both SMF and UPF in terms of their registration time, response time, throughput, resource cost, and CPU utilization. It is shown that not one of the above systems will always be the best choice;based on the requirements, a specific system may be the best under a specific situation.展开更多
文摘Network slicing is one of the most important concepts in 5G networks. It is enabled by the Network Function Virtualization (NFV) technology to allow a set of Virtual Network Functions (VNFs) to be interconnected to form a Network Service (NS). When network slices are created in 5G, some are shared among different 5G services while the others are dedicated to specific 5G services. The latter are called dedicated slices. Dedicated slices can be constructed with different configurations. In this research, dedicated slices of different configurations in 5G Core were evaluated in order to discover which one would perform better than the others. The performance of three systems would be compared: 1) Free5GC Stage 2 with each dedicated slice consisting of only UPF;2) Free5GC Stage 3 with each dedicated slice consisting of only UPF;3) Free5GC Stage 3 with each dedicated slice consisting of both SMF and UPF in terms of their registration time, response time, throughput, resource cost, and CPU utilization. It is shown that not one of the above systems will always be the best choice;based on the requirements, a specific system may be the best under a specific situation.